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Abstract

In this Thesis we introduce an extension continuous time model for the famous Merton’s

model by considering the problem of an economic agent whose lifetime is uncertain

and aims to determine the optimal strategies concerning social welfare purchase, life

insurance purchase, consumption and investment. The economic agent aims to maximize

an expected utility obtained from family consumption, size of estate in the event of

premature death, and size of estate at retirement time if she lives that long. We assume

that the economic agent agrees to sign contract with a selected (i) social welfare provider

from an available social welfare market composed of finite number of welfare providers,

and (ii) life insurance company from available life insurance market composed of finite

number of life insurance providers. Meanwhile, first we assume that the economic agent

invests all her saving in a financial market consists of one risky free asset and one risky

asset. An extension to the problem under consideration is being formulated when the

economic agent invests her saving in a financial market consists of finite number of risky

assets. We restate the problem under consideration as an optimal control problem and

apply the DPP to drive the corresponding HJB equation, a second order nonlinear PDE

whose solution is the desired objective function. Finally, we manage to find explicit

solution for the optimal strategies.
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Chapter 1

Introduction

In this Thesis we extend the work done by Moath in his reference [20] in

the following sense: (i) Mousa et al. in [25] introduced a problem of obtaining

the optimal strategies for the wage-earner with an uncertain lifetime. In the final

Chapter, they got the solution in the case of constant relative risk aversion (CRRA)

utilities. (ii) Sondos [21] studied the problem of finding the optimal strategies for

an economic-agent whose lifetime is uncertain and enters the social security system.

In special case of discounted (CRRA) utility function she got the optimal strategies

of consumption, investment and life insurance selection within registering in the

social welfare system but the welfare level was not being controlled. (iii) Moath

[20] made an extension on Sondos’ work. He found the optimal strategies for a

wage earner with uncertain lifetime where the welfare policy is being a new control

variable in the case where the social welfare system consist of only on welfare

provider. He used the dynamic programming principle derive Hamilton-Jacobi-

Bellman (HJB) equation and then try to find explicit solution using a special case

of family which is CRRA.

We make an extension by allowing the welfare policy to be an additional control
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variable in the case where the social welfare system consist of finite number of

welfare providers. We assume that the economic agent has access the welfare

policy as another kind of family protection. To address this problem, we’re going

to use the idea of dynamic programming principle. We will derive the result which

is nonlinear partial differential equation whose solution is the value function of the

problem under consideration using dynamic programming principle (DPP).

The starting point and development of Dynamic Programming Principle (DPP)

was attributed to Bellman’s work in [5, 6]. In [7], he made an extension on his

previous work with deterministic control process. As we know, the solution of

deterministic control process is a backwards recursive relation which is a partial

differential equation of order two whose solution is the desired value function.

More details were discussed in [14, 15, 39].

Yarri was the first researcher who started working in the filed of optimal financial

planing decision under uncertain lifetime in his reference [34]. After that, many

papers have been published based on Yarri’s research such as the work done by

Hakansson in [17, 18]. He worked in a discrete - lifetime and his purpose was to

maximize the expected utility for the entrepreneur from investing in money and

financial markets.

Similarly, in a discrete-time framework, Fischer in his research [13] examined life-

cycle patterns of optimal insurance purchase in detail using the dynamic program-

ming technique and obtained the formula for the present value of the future income,

a formula that is different from the one under a certain lifetime. He emphasis in

his paper on the comparative static and dynamics of the insurance demand and

function, more than existence of a solution itself.

The stochastic model of optimal investment and consumption decision was intro-

duced by Merton in [23, 24]. His models studied an individual with a fixed income

who aspires to maximize the utility return of consumption and wealth.
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Richard collected between Yarri’s model and Merton’s programming in his refer-

ence in [32]. Richard in [32] and Fischer in [13] both got a human capital theorem,

but Fischer got it only for function with Constant relative risk aversion (CRRA)

utilities. More realistic models are still developing today. For example, Andersen

Model [3] and Markove modulated risk model [4].

In 1991, Dumas in [10] studied a problem for a investor who saved his wealth

without consumption. At final point, the whole wealth was consumed.

A stochastic optimal linear quadratic control problem faced in [2], while in [40]

there is an additional condition that is forbidden to have short selling of stocks.

In, [26], H. Ou-Yang provided a model which had an interaction between investor

and professional manger.

Pliska and Ye in 2007 in their reference [27] depend on their work by Ye [35, 36].

They considered a problem notable by a wage earner with continuous lifetime

related with finite number of risky assets. In addition, Pliska and Ye in [27]

extended on Merton’s model for a wage earner who have a random time in life.

Bellman’s principle of optimality plays an important role with applications, hence

many papers used it later such as [2] in 2010.

Duarte et al. in [9] expanded Merton’s model. In addition, they relied on reference

[27], but with a financial market (FM) comprised of one risk-free and an arbitrary

number of risky securities in multidimensional Brownian motion (BM) space. They

discussed some properties of the solution in the case of CRRA utilities.

Shenab and Weib in [30] deemed a model for a wage earner in a complete market

with BM and unbounded parameter.

H. M. Soner and N. Touz based on Merton problem they consider a problem

with small proportional transaction costs in their reference [32]. They used the

asymptotic analysis to approach the solution of their problem.
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In 2019, Ye released new papers including stochastic problems. For example, in

[38] he used the marginal approach in order to solve his problem and achived his

goal to maximize the expected utility. A problem of random distribution kernels

which defined on a product space discussed in [37].

In this research, we will extend the work done by Mousa et al. in [25] and Moath

[20] by allowing the welfare policy to be a control variable in the economic agent’s

problem. We assume that the economic agent has access the welfare policy as

another kind of family protection through a contracts which starts at t ∈ [0, T ],

where T is the retirement age for the economic agent. The new setting in this paper

is that the economic agent has access to L welfare providers and want to choose

one only at a time. We consider that the economic agent is paying an amount ql(t),

where l = 1, 2, . . . , L to the l social welfare which is called the welfare premium.

The welfare premium ql(t) is assumed to be based on a welfare rate hl(t) which is

determined by the social welfare provider itself. If the economic agent perish at

time τ < T while participating in the social welfare policy, the social welfare pays

a sum of money given by
ql(τ)

hl(τ)
,

as a substitution to the family.

We organize this Thesis as follows. In Chapter 2 we will review some definitions

which help us in our thesis. In Chapter 3, we will look for the optimal strategies

under a social market of L welfare providers and one risky asset. To reach such

strategies we use dynamic programming principle technique. In Section 3.5, we

reach an important proposition in the case of CRRA utilities. In Chapter 4 we use

similar technique in order to study the problem of the economic agent who enter

industrial market with finite number of risky security assets. In the final Chapter

we get our conclusion.

Our main results in this Thesis are Theorem 4.2 and Proposition 4.1. Note that

the readers suppose to have a good knowledge in measure theory.
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Chapter 2

Basic preliminaries

The purpose of chapter 2 is to review some definitions that will be needed through

this thesis.

Definition 2.1. [12] Let Ω be a nonempty set. A σ -algebra on Ω is a collection

F of subsets of Ω with these properties:

1. ∅,Ω ∈ F .

2. If B ∈ F , then Bc ∈ F .

3. If B1, B2, · · · ∈ F , then
∞⋃
i=1

Bi ∈ F .

Example 2.1. Let Ω = N . Then

F = {∅,Ω, {1, 3, 5, ...}, {2, 4, 6, ...}},

is σ -algebra, where N is the natural numbers.

Definition 2.2. [12] If F is a σ - algebra on Ω we called (Ω,F) a measurable

space.
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Example 2.2. Back to example 2.1 (Ω,F) satisfies 2.2.

Definition 2.3. [12] We name

P : F → [0, 1],

a probability measure if:

(1) P(∅) = 0.

(2) P(Ω) = 1.

(3) 0 ≤ P(B) ≤ 1, for all B ∈ F

(4) P (
⋃∞
i=1Bi) ≤

∑∞
i=1 P (Bi) , If B1, B2, · · · ∈ F .

(5) If B1, B2, . . . are disjoint sets in F , implies

P

(
∞⋃
i=1

Bi

)
=
∞∑
i=1

P (Bi) .

(6) if C,D ∈ F , then

C ⊆ D implies P(C) ≤ P(D) .

Definition 2.4. [12] A triple (Ω,F ,P) is called a probability space.

Remark 2.1. [12] A property that’s true exclude for an event of probability 0 is

called to occur almost surely ( abbreviated “a.s.”).

Definition 2.5. [12] (Ω,F ,P) is named a complete probability space if ∀A ∈ F

with P(A) = 0,∀G ⊆ A then G ∈ F .

Definition 2.6. [29] Let C ⊆ Ω, then there is a smallest σ - algebra HC consisting

C, meant

HC =
⋂
{H,H is σ − algebra of Ω, C ⊆ H},

or named the σ - algebra generated by C.

Definition 2.7. [29] If C ⊆ Rn, then the Borel σ -algebra B is the smallest σ

-algebra of subsets of Rn consisting all open sets.
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Definition 2.8. [28] The collection of Lebesgue measurable sets is a σ-algebra

which contains all open sets and all closed sets.

Definition 2.9. [22] A mapping

Y : Ω→ Rnn,

defined on (Ω,F ,P) is named F -measurable if

Y −1(U) := {ω ∈ Ω;Y (ω) ∈ U} ∈ F ,

∀ open sets U ∈ Rn.

Definition 2.10. [12] Let (Ω,F ,P) be a probability space. A function

Y : Ω→ Rn,

is named an n -dimensional randome variable (RV) if ∀ B ∈ B, we get

Y−1(B) ∈ F ,

where B denotes the collection of Borel subsets of Rn, which is the smallest -algebra

of subsets of Rn containing all open sets and B are called Borel sets.

Definition 2.11. [12] Let A ∈ z: Then

1A(x) :=

 1 if x ∈ A

0 if x /∈ A,
(2.1)

is called the indicator function of A.

Example 2.3. The indicator function of A is a RV.

Definition 2.12. [22] A collection of RV Xt, t ∈ T with values in R is named a

stochastic process.

Definition 2.13. [8] Let (Xt)t∈R+
be a stochastic process on the probability space

(Ω,F ,P) and valued on the measurable space (E,B) (i.e, E is σ-algebra on B ).

7



The process (Xt)t∈R+
is measurable if it is measurable as a mapping defined from

R+ × Ω→ E.

Definition 2.14. [29] A filtration is a family

F = {Ft}t≥0 ,

of σ -algebras verifies

0 ≤ r < t⇒ Fr ⊂ Ft.

Definition 2.15. [12] A stochastic process

X = {xt : t ∈ T},

on a probability space is adapted to the filtration if for any t, Xt is an zt-measurable

RV.

Definition 2.16. [8] The process (Xt)t∈R+ is called progressively measurable rela-

tive to the filtration (Ft)t∈R+ if, for all t ∈ R+, the function

(s, ω) ∈ [0, t]× Ω→ X(s, ω),

is
(
B[0,t] ⊗Ft

)
-measurable.

Definition 2.17. [8] A real-valued process is named predictable relative to a fil-

tration (Ft)t∈R+
, if a mapping

R+ × Ω→ R,

is measurable relative to the σ -algebra generated by the same filtration.

Definition 2.18. [29] If ∫
Ω

|X(ω)|dP(ω) <∞,

8



then

E[X] :=

∫
Ω

X(ω)dP(ω) =

∫
Rn

xdµX(x),

is named the expectation of X.

Definition 2.19. [29] Two subsets B,C ∈ F are independent if

P(C ∩B) = P(C)P(B).

Definition 2.20. [29] If two RV X, Y are independent then

E[XY ] = E[X]E[Y ],

needed E[|X|], E[|Y |] <∞.

Definition 2.21. [12]

V (X) :=

∫
Ω

|X− E(X)|2dP,

called the variance of X.

Definition 2.22. [12] The distribution function of X is

FX : Rn → [0, 1],

and defined by

FX(x) := P(X ≤ x), ∀x ∈ Rn.

Definition 2.23. [8] Let X be a RV. The mapping

FX : R→ [0, 1],

with

FX(t) = P([X ≤ t]), ∀t ∈ R.

Named the cumulative distribution function of X.

9



Definition 2.24. [12] The joint distribution function

Fy1,...,ym : (Rn)m → [0, 1],

of the RV

Y1, . . . ,Ym : Ω→ Rn,

is

FY1,...,Ym (y1, . . . , ym) := P (Y1 ≤ y1, . . . ,Ym ≤ ym)

∀yk ∈ Rn, k = 1, . . . ,m.

Definition 2.25. [12] Let

X : Ω→ Rn,

is a RV and F its distribution function. If ∃ a nonnegative, integrable function

f : Rn → R,

such that

F (x) = F (x1, . . . , xn) =

∫ x1

−∞
· · ·
∫ xn

−∞
f (y1, . . . , yn) dyn . . . dy1.

Hence f is named the density function.

Theorem 2.1. [33] Define a probability space (Ω,F ,P), X and Y integrable RV

on Ω, and C and B sub-σ fields of F .

(i) E[βX + βY | C] = βE[X | C] + βE[Y | C] for β, β ∈ R.

(ii) If X ≥ Y then E[X | C] ≥ E[Y | C].

Definition 2.26. [29] An n -dimensional stochastic process {Mt}t≥0 on (Ω,F ,P)

is named a martingale to {Mt}t≥0 if

(i) Mt is Mt -measurable for all t,

10



(ii) E [|Mt|] <∞ ∀t.

(iii) E [Ms | Mt] = Mt ∀s ≥ t.

Definition 2.27. [12] Suppose

g : [0, T ]→ R,

is continuously differentiable deterministic function and not a stochastic process,

with g(0) = g(T ) = 0, then we define

∫ T

0

gdW = −
∫ T

0

g′Wdt,

where
∫ T

0
gdW is a RV.

Lemma 2.2. [12] Let g be a function that satisfies the previous definition, then

E
[∫ T

0

gdW

]
= 0.

Definition 2.28. [12] A Gaussian process is a stochastic process {Xt; t ∈ T} for

which any finite linear combination of samples will be normally distributed.

Theorem 2.1. Fubini -Tonelli theoream [11]

Suppose A and B are σ-finite measure spaces. not necessarily complete, and if

either ∫
A

(∫
B

f(x, y)dy

)
dx <∞,

or ∫
B

(∫
A

f(x, y)dy

)
dx <∞,

then ∫
A×B
|f(x, y)|d(x, y) <∞,

and

∫
A

(∫
B

f(x, y)dy

)
dx =

∫
B

(∫
A

f(x, y)dx

)
dy =

∫
A×B

f(x, y)d(x, y).

11



Definition 2.29. [16] Assume function f(x, y) is a smooth function. The gradient

of f(x, y) at a point (x0, y0) is the vector

∇f(x0, y0) = fx(x0, y0)~i+ fy(x0, y0)~j.

Definition 2.30. [19]

Given the optimization problem

max f(x),

subject to

gi(x) ≤ 0, ∀i ∈ I,

hj(x) = 0, ∀j ∈ J,

Then x∗ a local maximum if there exists multipliers µi ≥ 0, ∀i ∈ I and λj for

all j ∈ J such that

∇f(x∗)−
∑
i

µi∇gi(x∗)−
∑
j

λj∇hj(x∗) = 0,

µigi(x
∗) = 0, ∀i ∈ I,

µi ≥ 0, ∀i ∈ I.

These are the Kuhn-Tucker conditions.

Definition 2.31. [16] A vector field is a function that assigns a vector to each

point in its domain. A vector field space the form

~F (x, y, z) = M(x, y, z)~i+N(x, y, z)~j + P (x, y, z)~k.
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We say that

(i) A vector field ~F is a continuous if the component functions M,N,P are con-

tinuous.

(ii) ~F is differentiable if the component functions M,N,P are differentiable.

Definition 2.32. [16] A function is of class Cn if it is differentiable n times and

the nth derivative is continuous.

2.1 Brownian motion and Markov process

In this section, we will discuss the meaning of Standard One-Dimensional BM and

n -Dimensional BM. Brownian Motion was first observed in 1827 by the biologist

Robert Brown. The definition and proving the existence of Brownian Motion was

studied by Norbert Wiener in 1920. Hence, Brownian Motion is same as Winner

Process.

Definition 2.33. [12] A stochastic process

B = {Bt : 0 ≤ t ≤ ∞},

defined on probability space (Ω,F ,P) adapted to filtration zt is named standard

one- dimensional BM (Wiener process) if:

1. B are continuous function of t.

2. B0 = 0 a.s.

3. For 0 ≤ r ≤ t , Bt −Br is independent of zr.

4. For 0 ≤ r ≤ t ,the increment Bt − Br is normally distribution with mean zero

and variance t− r.

Definition 2.34. [8] The real-valued process (W1(t), . . . ,Wn(t))t≥0 is called an n

-dimensional BM if

1. ∀k ∈ {1, . . . , n}, (Wk(t))t≥0 is a Wiener process.

2. (Wk(t))t≥0 , k = 1, . . . , n, are independent.
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Proposition 2.1. [8]

1. The Wiener process is a Gaussian process.

2. The Wiener process is a martingale.

3. Almost all paths of the BM (Wt)t∈R+
are not differentiable anywhere.

Definition 2.35. [12] B(R) is the usual Borel sigma algebra generated by the open

sets.

Definition 2.36. [12]

X = {Xt : 0 ≤ t ≤ ∞},

defined on (Ω,z,P) adapted to filtration zt and take values in Rd is called Markov

process with initial distribution µ if the following proprieties hold:

1. P(X0 ∈ A) = µ(A) for any A ∈ B(Rd).

2.if s, t > 0 and A ∈ B(Rd), Then

P(Xs+t ∈ A|zs) = P(Xs+t ∈ A|Xs) a.s.

The second property is called the Markov property (i.e. the conditional probability

distribution of future states rely just on the present state).

2.2 Differential equations

In this section, we will discuss the difference between ordinary differential equa-

tion (ODE) and stochastic differential equation (SDE).

Definition 2.37. [1] Differential equation is an equation that contains one or

more terms and the derivatives of one variable.
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2.2.1 Ordinary differential equations

Definition 2.38. [1] ODE consist of only one independent variable and one or

more of its derivatives relative to the variable (only ordinary derivatives appear in

the equation).

Confirm a point x0 ∈ Rn. The ODE : ẋ(t) = b(x(t)) (t > 0)

x(0) = x0,

where

b : Rn → Rn,

is a smooth vector field. Also,

x(·) : [0,∞)→ Rn,

is the trajectory of the solution.

Below is a graph of a possible trajectory of the solution of ODE.

Figure 2.1: A sample path for a solution of a differential equation

Definition 2.39. [31]A 1st order linear ODE is linear has the form

dy

dx
+ A(x)y = B(x), y(x0) = y0,
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where y is the dependent variable and x is the independent variable.

Let us now solve the following ODE, which will appear in Chapter 2.

Example 2.4. The following ODE

dS0(t)

S0(t)
= r(t)dt, S0(0) = s0 > 0. (2.2)

Can be solved using the integrating factor method. First let us write it as the

following
dS0(t)

dt
− r(t)S0(t) = 0.

The integrating factor µ(t) is computed as

µ(t) = e−
∫ t
0 r(t)dt.

The solution has the form

S0(t) =
1

µ(t)

(∫
µ(t).0dx+ C

)
,

where C is a constant

Hence,

S0(t) = Ce
∫ t
0 r(t)dt.

Using that S0(0) = s0 > 0 we obtain

S0(t) = s0 = Ce
∫ 0
0 r(t)dt.

Hence

C = s0.

Finally,

S0(t) = s0e
∫ t
0 r(t)dt.
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2.2.2 Stochastic differential equations

In this subsection we define stochastic differential equation and give an example

illustrate it.

Definition 2.40. [12] Any SDE is a differential equation with some coefficients

are being random, and so its solution will have some randomness.

Stochastic differential equation is a modification on the ODE include random effect

disturbing the system Ẋ(t) = b(X(t)) + B(X(t))ξ(t) (t > 0)

X(0) = x0,

where

B : Rn →Mn×m

and

ξ(·) := “white noise”.

Below is a graph of trajectory of the stochastic differential equation.

Figure 2.2: A sample path for a solution of a stochastic differential
equation

Example 2.5. Given the following differential equation

dN

dt
= a(t)N(t), N(0) = N0 (constant),
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where

1.N(t) is the size of the population at t.

2. a(t) is the relative rate of growth at t and

a(t) = r(t) + “noise” .

This model is named the population growth model so the previous DE becomes

stochastic.

2.3 Itô’s formula

In this section we will state Itô’s formula which help us to find the derivatives

of the SDE.

Definition 2.41. [12] L1(0, T ) is the space of all real-valued, progressively mea-

surable stochastic process F (.) such that

E

[∫
X

|F |dt
]
<∞.

Definition 2.42. [12] L2(0, T ) is the space of all real-valued, square-integrable

functions defined on (0, T ).

Definition 2.43. [12] Suppose that X(·) is a real- valued stochastic process satis-

fying

X(r) = X(s) +

∫ r

s

Fdt+

∫ r

s

GdW (2.3)

for some F ∈ L1(0, T ), G ∈ L2(0, T ) and all times 0 ≤ s ≤ r ≤ T . We say that

X(·) has the stochastic differential

dX = Fdt+GdW, 0 ≤ t ≤ T.
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Theorem 2.3. [12] Given the SDE

dX = Fdt+GdW,

for F ∈ L1(0, T ), G ∈ L2(0, T ). Assume u(x, t) defined by

u : R× [0, T ]→ R,

has continuous 1st and 2nd derivative with respect to x and continuous 1st derivative

with respect to t exist and are continuous. Put

Y (t) := u(X(t), t).

Implies Y has the SD

dY =
∂u

∂t
dt+

∂u

∂x
dX + 0.5

∂2u

∂x2
G2dt.

=

(
∂u

∂t
+
∂u

∂x
F +

1

2

∂2u

∂x2
G2

)
dt+

∂u

∂x
GdW. (2.4)

We call (2.4) Itô’s formula. If we want to write the Itô’s formula for one standard

BM we use chain rule as follow. Let f(x) and Y(t) are a differentiable functions,

then

d

dt
f(Y (t)) = f ′(Y (t))Y ′(t)

= f ′(Y (t))dY (t).

However, if Y(t) is not differentiable and has nonzero quadratic variation, then

the formula is

df(Y (t)) = f ′(Y (t))dB(t) + 0.5f ′′(Y (t))dt.

The above equation is give use an equivalent form and idea how we get (2.4).

19



Remark 2.2. Note that the identity (2.4) means that for all 0 ≤ s ≤ r ≤ T ,

Y (r)− Y (s) = u(X(r), r)− u(X(s), s)

=

∫ r

s

∂u

∂t
(X, t) +

∂u

∂x
(X, t)F +

1

2

∂2u

∂x2
(X, t)G2dt

+

∫ r

s

∂u

∂x
(X, t)GdW a.s.

Since if we set s = 0 in 2.3 we get

X(r) = X(0) +

∫ r

0

Fdt+

∫ r

0

GdW

Concluding that X(·) has continous sample paths almost surely. Thus for almost

every path, the functions

t→ ut (X(t), t) ,

t→ ux (X(t), t) ,

t→ uxx (X(t), t) ,

are continuous; and so integrals in the statement of this remark are defined.
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Chapter 3

Optimal strategies within a social

market of L welfare providers and one

risky asset

In this Chapter, we extend work done by Moath introduced in [20] by allowing

the welfare policy to be a control variable added to the problem of the economic

agent. We assume that the economic agent has entered the welfare markets to

save her family through a contracts which starts at time t = 0 up until time T

in the future, where T is the retirement age for the economic agent. The new

setting in this chapter is that the economic agent has L welfare providers and

want to choose one only at each instant of time t ∈ [0, T ]. And the economic

agent pay an amount ql(t) where l = 1, 2, . . . , L to the lth social welfare which is

called the welfare premium. The welfare premium ql(t) is based on a welfare rate

hl(t) determined by the lth social welfare provider.
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3.1 Model setup

Our industrial markets consists of the financial market which is available to the

economic agent, the life insurance market and social welfare market. In this section

we describe their details separately. After that, we introduce wealth process.

3.1.1 Financial market with one risky asset

• Consider a complete probability space (Ω,F ,P).

• W (t) is a standard one-dimensional BM.

• Let

F = (Ft)t∈[0,T ],

be the P- augmentation of the filtration generated by the one-dimensional

BM denoted by W (·),

(σ(W (s), s ≤ t), ∀t ≥ 0.

• T interpreted as the economic agent retirement time.

Assume FM comprised of a risk-free asset with time- t price symbolized by (S0 (t))0≤t≤T

that evolves with time by the ODE

dS0(t) = S0(t)r(t)dt, s0(0) = s0, (3.1)

and one risky security s1(t) evolves with time according to the linear SDE:

dS1(t)

S1(t)
= µ(t)dt+ σ(t)dW (t), s1(0) = s1. (3.2)
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where S0(0) = s0 and S1(0) = s1 are a positive constant.

The expected rate of return for the risky asset is defined by

µ : [0, T ]→ R,

and assumed to be a continuous function named the risky security expected rate

of return. σ(t) is the risky-asset volatility and

σ : [0, T ]→ R,

is a continuous mapping verifying σ2(t) ≥ j,∀t ∈ [0, T ], for some positive constant

j.

Assumption 3.1. [25] The coefficients r(t), µ(t) and σ(t) are deterministic con-

tinuous functions on [0, T ] such that the interest rate r (t) > 0.

3.1.2 Life insurance market

Assume that the economic agent is still live at t = 0. In addition, her lifetime is

a RV given by τ ≥ 0 and defined on (Ω,F ,P).

Assumption 3.2. [25] The RV τ has a distribution function

G− : [0,∞]→ [0, 1],

with density probability

g(t) : [0,∞)→ (0,∞),

so

G− , P (τ ≤ t) =

∫ t

0

g(u)du.

The insurance market contains a group of I companies each company offers a

different contract. The life insurance is obtainable continuously by paying an
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premium rate

φi(t) : [0, T ]→ (0,∞)

for each i = 1, 2, ..., I to the company.

If the economic agent perish at time τ < T and she is still covered by insurance,

the company pays:

Υ(τ) =
φi(τ)

ζi(τ)
, (3.3)

where

ζi :
[
0, T

]
→ (0, 1),

is a continuous and deterministic function named the ith insurance premium-

payout ratio.

Assumption 3.3. [25] Assume that the I insurance companies suggest pairwise

distinct contracts, i.e, ζi1(t) 6= ζi2(t) for every i1 6= i2 and Lebesgue-almost-every

t ∈ [0, T ].

φ(t) is written as a vector by

φ(t) =



φ1(t)

φ2(t)

.

.

.

φI(t)


∈ (R+

0 )I ,

where for each i ∈ 1, 2, ..., I. If the economic agent did not sign the contract with

the ith insurance company then φi equals zeros. Otherwise it take the value that

the economic agent paid. At each instant of time t ∈ [0, T ], the economic agent is

assumed to sign only one contract.
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3.1.3 Social welfare market

We assume that L social welfare providers offer services in the social welfare mar-

ket. The economic agent aims to choose one social welfare which make the best

advantage of this offer to protect her family. The contract between the economic

agent and the social welfare market finishes as the economic agent dies or reaches

to pension age, which occurs first.

If the economic agent dies at time τ while participating in the social welfare policy,

the social welfare provider pays
ql(τ)

hl(τ)
, (3.4)

where the welfare rate

hl(t) : [0, T ]→ (0,∞),

is continuous and deterministic positive function for all l = 1, 2, . . . , L which is

determined by the social welfare provider, and the welfare premium

ql(t) : [0, T ]→ (0,∞),

is non-negative deterministic function for each l = 1, 2, . . . , L.

The economic agent total legacy to her estate at τ ≤ T is then given by

Ῡ(τ) =
L∑
l=1

ql(τ)

hl(τ)
. (3.5)

Assumption 3.4. We assume that the L social welfare provider suggest pairwise

distinct contracts, i.e, hl1(t) 6= hl2(t) ∀l1 6= l2 and Lebesgue a.e at t ∈ [0, T ].
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We can write q(t) as a vector,

q(t) =



q1(t)

q2(t)

.

.

.

ql(t)


∈ RL.

The quantity ql(t),∀l ∈ 1, 2, ..., L, represent the life-insurance rate paid to the

lth insurance company. If the economic agent did not sign the contract with the

insurance company then ql equal zeros. Otherwise it take the value that the

economic agent paid. We assume the economic agent signs only one contract at

each instant of time t ∈ [0, T ].

Now we can denote the total legacy for the economic agent in the case of an early

death at time τ ≤ T as:

X (τ) +
I∑
i=1

φi(τ)

ζi(τ)
+

L∑
l=1

ql(τ)

hl(τ)
,

where X (t) represent the economic agent’s wealth savings at time t ∈ [0, T ].

Now we want to define a new function, which is called the survivor function denoted

by G+(i.e the probability that the lifetime is equal or greater than to t)

G+(t) = 1−G−(t) =

∫ ∞
t

g(u)du,

The function ξ(t) , which is called hazard function is the ratio of the probability

density function g(x) to the survival function:

ξ(t) =
g(t)

G+(t)
,
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Also previous equation can be rewritten as:

ξ(t) =
g(t)

1−G−(t)
.

From the definition of survivor function, note that −g(t) is the derivative of G+

so we get:

ξ(t) =
−dG+

dt

G+(t)
,

ξ(t) = − d

dt
(lnG+(t)).

Integrate from 0 to t and introduce G+(0) = 1:

−
∫ t

0

ξ(u)du = lnG+(t).

Take exponential function of both sides, so that

G+(t) = e(−
∫ t
0 ξ(u)du). (3.6)

Because of the probability density function is related to the hazard function, we

obtain:

g(t) = ξ(t)e(−
∫ t
0 ξ(u)du),

Hence, they are a relation between hazard functions and density functions. From

now, the hazard function is known and defined as

ξ(t) : [0,∞]→ (0,∞),

continuous, deterministic function verifies:

∫ ∞
0

ξ(t)dt =∞.
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Let G+ (k, t) . be the conditional probability for the economic agent whose still

live at time k conditional stilling live at t ≤ k, given:

G+ (k, t) = P
(
{τ > k}|{τ > t}

)
. (3.7)

Similarly, we can define G− (k, t) to be the the conditional probability for the

economic agent time of death to happen at time k conditional to still live at t ≤ k,

as:

G− (k, t) = P
(
{τ ≤ k} | {τ > t}

)
.

Also g− (k, t) represent the corresponding density function with G−(k, t), then we

get:

g− (k, t) =
d

dt
G− (k, t) . (3.8)

3.1.4 Wealth process

Assume the economic agent is started with initial wealth x. She will get an

income m(t) through the period [0, T ∧τ ]. m(t) stops by her death or her pension.

That depends on what come first.

Assumption 3.5. [25]

m(t) : [0, T ]→ [0,∞),

is a deterministic Borel-measurable function verifying

∫ T

0

m(t)dt <∞,

which is called the integrability condition.

Assumption 3.6. [25]

1. Assume the consumption process (κ (t))0≤t≤T is a (Ft)0≤t≤T progressively measur-

able non negative process verifying for T > 0
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∫ T
0
κ (t) dt is finite a.s.

2. The ith insurance premium-payout ratio for each i = 1, 2, ..., I and the lth welfare

premium-payout for each l = 1, 2, ..., L are a non-negative (Ft)0≤t≤T predictable

process.

3. Let θn (t) denote the fraction of the economic agent wealth allocated to the asset

Sn at time t. Then the economic agent portfolio is given by

Θ =



θ1

.

.

.

θN


∈ RN ,

If we know θ1(t), . . . , θn(t), then

θ0(t) = 1−
N∑
n=1

θn(t),

since all θn(t) ∈ [0, 1], for all n=0, 1, ..., N and t ∈ [0, T ].

Moreover, we assume it a (Ft)0≤t≤T progressively measurable satisfying:

∫ T
0
‖Θ (t) ‖2dt is finite a.s.

Now we can introduce the wealth process X(t), t∈ [0, T ∧ τ ].

X (t) = x0 +

∫ t

0

(
m (s)− κ (s)−

I∑
i=1

φi (s)−
L∑
l=1

q(s)

)
ds

+
N∑
n=0

∫ t

0

X (s) θn (s)

Sn (s)
dSn (s) .
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Since in this Chapter we have one risky asset (N=1) above equation can be rewrit-

ten as

X (t) = x0 +

∫ t

0

(
m (s)− κ (s)−

I∑
i=1

φI (s)−
L∑
l=1

q(s)

)
ds

+

∫ t

0

X (s) θ0 (s)

S0 (s)
dS0 (s) +

∫ t

0

X (s) θ1 (s)

S1 (s)
dS1 (s) . (3.9)

Differentiate (3.9) relative to t we get

dX

dt
= 0 +

(
m(t)− κ(t)−

I∑
i=1

φi (t)−
L∑
l=1

q(t)

)

+
X (t) θ0 (t)

S0 (t)

dS0 (t)

dt
+
X (t) θ1 (t)

S1 (t)

dS1 (t)

dt
.

Substitute (3.1) and (3.2) in above equation we obtain

dX

dt
=

(
m(t)− κ(t)−

I∑
i=1

φi (t)−
L∑
l=1

q(t)

)

+
X (t) θ0 (t)

S0 (t)
S0(t)r(t) +

X (t) θ1 (t)

S1 (t)
S1(t)

(
µ(t) + σ(t)

dW (t)

dt

)
.

Multiply by dt we get

dX (t) =

(
m (t)− κ (t)−

I∑
i=1

φi (t)−
L∑
l=1

q(t)+

(
θ0(t)r(t) + θ1(t)µ(t)

)
X(t)

)
dt+ θ1(t)σ(t)X(t)dW (t). (3.10)

3.2 Stochastic optimal control problem

In this section we will define the expected utility for the economic agent.

• Denote C (0, x) is the set of all admissible decision strategies

(κ (·) , φ (·) , q (·) , θ (·)) .
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• L (t, ·) represent the utility function for the economic agent’s family con-

sumption level at time t ∈ [0, T ].

• R (·) represent the utility function for the terminal wealth at pension.

• Y (t, ·) represent the utility f for the amount of the economic agent’s legacy

at t ∈ [0, T ] is denoted by .

Recall that that total legacy as said in previous subsection. Then we define the

expected utility by:

E0,x

[∫ T∧τ

0

L (s, κ (s)) ds+
(
Y (τ,Υ (τ)) + Y (τ, Ῡ (τ)

)
1[0,T ] (τ)

+R (X (T )) 1(T,∞) (τ)

]
,

where 1A is the indicator function of set A.

Assumption 3.7. [25] The utility functions

L (t, (·)) : [0, T ]× [0,∞)→ [0,∞),

Y (t, (·)) : [0, T ]× [0,∞)→ [0,∞),

are twice differentiable, strictly increasing and strictly concave functions on their

second variable. And

R : [0,∞)→ [0,∞),

is a twice differentiable, strictly increasing and strictly concave function.

In this section we will use traditional methods to get explicit formulas for the

economic agent’s optimal decision strategies. In detail, we refer to Yee (2006)

for driving the Hamilton -Jacobi- Bellman equation after that we solve it for the

optimal strategies on a fixed planning horizon.
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Let (κ(t), φ(t), θ(t), q(t)) ∈ C(t, x) be the decision strategies for the dynamics of the

wealth process with boundary condition X(t) = x. For any (κ(t), φ(t), θ(t), q(t)) ∈

C(t, x) we define the corresponding expected utility as:

J (t, x; v) = Et,x

[∫ T∧τ

t

L (s, κ (s)) ds+ (Y (τ,Υ (τ)) + Y
(
τ, Ῡ (τ)

)
)1[0,T ] (τ)

+R
(
Xv
t,x (T )

)
1(T,∞) (τ) |τ > t | Ft

]
, (3.11)

where Xv
t,x (S) is the solution of the stochastic differential equation (SDE) (3.10).

Depends on that all previous assumptions are hold 3.1-3.7, then we can get the

next lemma.

Lemma 3.1. [20] If τ is independent of F, then

J (t, x; v) = Et,x

[∫ T

t

(
G+ (k, t)L (k, κ (s)) + g− (k, t) (Y (k,Υ (s))

+Y (k, Ῡ (s)

)
dk +G+ (T, t)R (X (T )) | Ft

]
,

where G+ (k, t) and g− (k, t) as in (3.7) and (3.8).

Proof. See [20].

The previous Lemma allow us to transform our OCP to a fixed planing horizon

which is equivalent. To proceed let C(t, x) be the set of all admissible strategies

such that

v = (κ (·) , φ (·) , q (·) , θ (·)) ∈ C(t, x).

Then let

V (t, x) = sup
v∈C(t,x)

J (t, x; v) .

Remark 3.2. We can write the conditional density function as

g− (k, t) = e−
∫ s
t ξ(v)dvg− (k, s) ,
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and similarly the conditional probability

G+ (k, t) = e−
∫ s
t ξ(v)dvG+ (k, s) ,

for 0 ≤ t < s < T .

Lemma 3.3. [20] Assume that all Assumptions 3.1-3.7 hold. Then for 0 ≤ t <

s < T , V (t, x) verifies the recursive relation

V (t, x) = sup
v∈C(t,x)

E

[
exp
(
−
∫ s

t

ξ (k) dk
)
V
(
s,Xv

t,x (s)
)

+

∫ s

t

(
G+ (k, t)L (k, κ (k))+g− (k, t)

(
Y
(
k,Υv

t,x (k)
)
+Y

(
k, Ῡv

t,x (k)
)))

dk | Ft

]
.

Proof. See [20].

3.3 Hamiltonian theorem

Let us define new function which is called the Hamiltonian function given by

H (t, x, v) =

(
m(t)− κ (t)−

I∑
i=1

φi(t)−
L∑
l=1

q(t)

+

(
r (t) + θ (µ (t)− r (t))

)
x

)
Vx (t, x) +

x2

2

(
θ(t)σ (t)

)2
Vxx (t, x) (3.12)

+L (t, c) + ξ (t)

(
Y

(
t, x+

I∑
i=1

φi(t)

ζi(t)

)
+ Y

(
t,

L∑
l=1

q(t)

h (t)

))
.

The proof of the next result follows closely to the technique introduced by Ye [36]

and Yong and Zhou [39] by adding the corresponding updates that fit with our

model.

Theorem 3.4. (Hamilton-Jacobi-Bellman Equation)
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Suppose that V is of class C1,2 ([0, T ]× R). Hence V verifies the HJB equation

Vt (t, x)− ξ (t)V (t, x) + sup
(κ,φ,q,θ)∈R×(R+)I×RL×R

H (t, x, κ, φ, q, θ) = 0 (3.13)

V (T, x) = R (x),

where the Hamiltonian function H as in (3.12). Also,

v∗ = (κ∗ (·) , φ∗ (·) , q∗(·), θ∗ (·)) ∈ C (t, x) ,

which related wealth is X∗ is optimal ⇔ for a.e. s ∈ [t, T ] we get

Vt (s,X∗ (s))− ξ (s)V (s,X∗ (s)) +H (s,X∗ (s) , v∗) = 0. (3.14)

Proof. To prove this theorem we use the definition of Itô’s formula, by setting

s = t+ h in the DPP.

V (t+ h,X(t+ h)) = V (t, x) +

∫ t+h

t

{
Vt(s,X(s))

+ Vx(s,X(s))

[
r(s)X(s)− κ(s)−

I∑
i=1

φi(s)−
L∑
l=1

q(s)

+m(s) + θ(s)(µ(s)− r(s))X(s)

]
+

1

2
Vxx(s,X(s))θ2(s)σ2(s)X2(s)

}
ds

+

∫ t+h

t

Vx(s,X(s))θ(s)σ(s)X(s)dW (s).

(3.15)

We know that the Taylor expansion of ex is given by

ex = 1 + x+
x2

2!
+
x3

3!
+ ...

Hence,

e(−
∫ t+h
t ξ(v)dv) = 1− ξ(t)h+O

(
h2
)
,

34



where h is small positive, and O (h2) is an error of order two. From above equation

and by dynamic programming principle we obtain:

0 = sup
(κ,φ,q,θ)∈C(t,x)

E

[(
1− ξ(h) +O(h2)

)
V (t+ h,X(t+ h))− V (t, x)

+

∫ t+h

t

(
G+ (u, t)L (u, κ (u))

+ g− (u, t)

(
Y (u,Υ (u)) + Y

(
u, Ῡ (u)

)))
du | Ft

]
.

Divide above equation by h, let h→ 0 and from PDD Lemma 3.3 we get

0 = sup
(κ,φ,q,θ)∈C(t,x)

[
Vt(t, x)− ξ(t)V (t, x) +

(
m (t)− κ (t)−

I∑
i=1

φi(t)

−
L∑
l=1

q(t) +

(
r (t) + θ (µ (t)− r (t))

)
x

)
Vx (t, x) +

1

2
σ2(t)θ2x2Vxx(t, x)

+ L(t, κ(t)) + ξ (t)
(
Y (t,Υ(t)) + Y (t, Ῡ(t))

)]
.

Substitute Υ(t) and Ῡ(t) in above equation. Note that Vt(t, x)−ξ(t)V (t, x) doesn’t

rely on (κ, φ, θ, q) then we get the result.

To prove the 2nd part of the theorem which is equation (3.14) we also applying

Itô’s formula on e

(
−
∫ s
t ξ(v)dv

)
V (s,X(s)) we get the following

V (t, x) = e−
∫ T
t ξ(v)dvW (X(T ))−

∫ T

t

e−
∫ i
t ξ(v)dv

{
Vt(u,X(u))

+ Vx(u,X(u))
[
r(u)X(u)− κ(u)−

I∑
i=1

φi(u)−
L∑
l=1

q(u) +m(x)

− r(u))X(u) + θ(u)(µ(u)
]
ξ(u)V (u,X(u))

+
1

2
Vxx(u,X(u))θ2(u)σ2(u)X2(u)

}
du

−
∫ T

t

e−
∫ u
t ξ(v)dvVx(u,X(u))θ(u)σ(u)X(u)dW (u).
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Taking expectation to the both side

V (t, x) = E
[
e−

∫ T
t ξ(v)dvW (X(T ))−

∫ T

t

e−
∫ u
t ξ(v)dv

{
Vt(u,X(u))

+ Vx(u,X(u))
[
r(u)X(u)− κ(u)−

I∑
i=1

φu(u)−
L∑
l=1

q(u) +m(x)

− r(u))X(u) + θ(u)(µ(u)
]
ξ(u)V (u,X(u))

+
1

2
Vxx(u,X(u))θ2(u)σ2(u)X2(u)

}
du

−
∫ T

t

e−
∫ u
t ξ(v)dvVx(u,X(u))θ(u)σ(u)X(u)dW (u).

By linearity of expectation we obtain:

V (t, x) = E
[
e−

∫ T
t ξ(v)dvW (X(T ))

]
− E

[∫ T

t

e−
∫ u
t ξ(v)dv

{
Vt(u,X(u))

− ξ(u)V (u,X(u)) + Vx(u,X(u))
[
m(u)− κ(u)−

U∑
i=1

φu(u)

+
L∑
l=1

q(u) + r(u)X(u) + θ(u)(µ(u)− r(u))]

+
1

2
Vxx(u,X(u))θ2(u)σ2(u)X2(u)du

]
.

Rearrange terms we get

V (t, x) = = J(t, x, κ, φ, q, θ)− E
[∫ T

t

e−
∫ u
t ξ(v)dv

{
Vt(u,X(u))

− ξ(u)V (u,X(u)) +H(u,X(u), κ, φ, q, θ)

}
du

]
.

From above equation we have

V (t, x) = J(t, x, κ∗, φ∗, q∗, θ∗)− E
[∫ T

t

e−
∫ u
t ξ(v)dv

{
Vt(u,X

∗(u))

− ξ(u)V (u,X∗(u)) +H(u,X∗(u), κ∗, φ∗, q∗, θ∗)

}
du

]
.
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From

V (t, x)− J(t, x, κ∗, φ∗, q∗, θ∗) ≥ 0.

We prove that first direction as follow

− E
[∫ T

t

e−
∫ u
t ξ(v)dv

{
Vt(u,X

∗(u))

− ξ(u)V (u,X∗(u)) +H(u,X∗(u), κ∗, φ∗, q∗, θ∗)

}
du

]
≥ 0.

Hence,

Vt (s,X∗ (s))− ξ (s)V (s,X∗ (s)) +H (s,X∗ (s) , v∗) ≤ 0. (3.16)

Now we want to prove the other direction.

J(t, x, κ, φ, q, θ)− E
[∫ T

t

e−
∫ u
t ξ(v)dv

{
Vt(u,X(u))

− ξ(u)V (u,X(u)) +H(u,X(u), κ, φ, q, θ)

}
du

]
Rearrange terms we get

≥ J(t, x, κ, φ, q, θ)− E
[∫ T

t

e−
∫ u
t ξ(v)dv

{
Vt(u,X(u))

−ξ(u)V (u,X(u)) + φ(κ,φ,q,θ)∈C(t,x)H(u,X(u), κ, φ, q, θ)

}
du

]
= J(t, x, κ, φ, q, θ).

Yielding

V (t, x) ≥ J(t, x, κ∗, φ∗, q∗, θ∗)− E
[∫ T

t

e−
∫ u
t ξ(v)dv

{
Vt(u,X

∗(u))

− ξ(u)V (u,X∗(u)) +H(u,X∗(u), κ∗, φ∗, q∗, θ∗)

}
du

]

Hence

Vt (s,X∗ (s))− ξ (s)V (s,X∗ (s)) +H (s,X∗ (s) , v∗) ≥ 0. (3.17)
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(3.16) and (3.17) implies the result.

3.4 Optimal strategies in terms of the value function

In this subsection we want to find the optimal strategies such as the optimal

insurance premium, optimal portfolio, optimal consumption, and optimal welfare

policy in terms of the value function V (t, x) for the economic agent.

Let Lx(t, ·) and Yx(t, ·) be the derivatives of the utility functions L(t, ·) and Y (t, ·)

respectively. So the derivatives are invertible.

Let us define new unique functions Z1, Z2 as

Z1 (t, Lx(t, x)) = x and Lx(t, Z1(t, x)) = x,

Z2(t, Yx(t, x)) = x and Yx(t, Z2(t, x)) = x,

where

Z1(t, x) : [0, T ]× [0,∞)→ [0,∞),

and

Z1(t, x) : [0, T ]× [0,∞)→ [0,∞),

∀t ∈ [0, T ] and x ∈ R+
0 .

Next theorem give us the formula of the optimal strategies that we are looking for.

The proof of the next result follows closely to the technique introduced by Mousa

et al. [25] by adding the corresponding updates that fit with our model.

Theorem 3.5. Let Assumptions 3.1-3.7 satisfied and V ∈ C1,2([0, T ] × R,R).

Implies that H has a unique maximum v∗ = (κ∗(·), φ∗(·), q∗(·), θ∗(·)) ∈ C(t, x). In

addition, the optimal strategies that we are looking for are

κ∗(t, x) = Z1(t, Vx(t, x)),

θ∗(t, x) = β0Vx(t,x)
xVxx(t,x)σ2(t)

,
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φ∗(t, x) =


max

{
0,

[
Z2

(
t, ζi(t)Vx(t,x)

ξ(t)

)
− x
]
ζi (t)

}
, if i = i∗ (t)

0 Otherwise,

where

i∗ (t) = arg min
i∈{1,2...,I}

{ζi (t)}, (3.18)

q∗(t, x) =


max

{
0,

[
Z2

(
t, hl(t)Vx(t,x)

ξ(t)

)
hl (t)

}
, if l = l∗ (t)

0 Otherwise,

where

l∗ (t) = arg min
l∈{1,2...,L}

{hl (t)}. (3.19)

Proof. We want to find (κ∗(·), φ∗(·), q∗(·), θ∗(·)) ∈ C(t, x) where H attains its max-

imum. We can separate H for 4 independent conditions as follows:

sup
(κ,φ,q,θ)∈R×(R+

0 )I×RL×[0,1]

H (t, x, κ, φ, q, θ) = sup
κ∈R

{
L (t, κ)− κVx (t, x)

}

+ sup
φ∈(R+

0 )I

{
ξ (t)Y

(
t, x+

I∑
i=1

φi(t)

ζi(t)

)
− Vx (t, x)

I∑
i=1

φi(t)

}
(3.20)

+ sup
q∈RL

{
ξ (t)Y

(
t,

L∑
l=1

q(t)

h(t)

)
−

L∑
l=1

q(t)Vx (t, x)

}
+m (t)Vx (t, x) + r(t)xVx (t, x)

+ sup
θ∈[0,1]

{
x2

2

(
θ(t)σ (t)

)2

Vxx (t, x) + θ(t) (µ (t)− r (t))xVx (t, x)

}
.

Now we study each variable separately. Let us start by differentiate equation

(3.20) with respect to (w.r.t) κ we obtain :

Lκ (t, κ∗)− Vx (t, x) = 0.

Or

Lκ (t, κ∗) = Vx (t, x)
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From the definition of Z1 and its uniqueness we get:

Z1(t, Lκ(t, κ
∗)) = Z1(t, Vx(t, x)).

Thus

κ∗ (t, x) = Z1(t, Vx(t, x)).

Similarly,if we differentiate equation (3.20) w.r.t θ gives us

x2Vxx(t, x)θ∗σ2 + (µ(t)− r(t))xVx (t, x) = 0.

Now by solving above equation for the control variable θ∗ we get

θ∗(t, x) = −(r(t)− (µ(t))Vx(t, x)

xVxx(t, x)σ2(t)
, (3.21)

For simplify set β0 = µ(t)− r(t). Hence

θ∗(t, x) = − β0Vx(t, x)

xVxx(t, x)σ2(t)
, (3.22)

To find the optimal values of φ and q we solve the constrained optimization problem

related to the control variable φ ∈ (R+
0 )I and q ∈ RL, respectively, by using the

Kuhn-Tucker conditions.

To solve the constrained optimization problem to find q∗. In Particular, we use

the Kuhn-Tucker conditions to search for a solution

(q1 (t, x) , . . . , qL (t, x) , ξ1 (t, x) , . . . , ξL (t, x)) ,

subject to next qualities and inequalities

ξ (t)

hl (t)
Yx

(
t,

L∑
l=1

ql(t)

hl (t)

)
− Vx (t, x) = −ξl,
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subject to:

ql ≥ 0,

ξl ≥ 0, l = 1, 2, . . . , L

qlξl = 0.

We have two cases:

• Consider the case when l1 = l2. If ξl1 (t, x) = ξl2 (t, x) for some (t, x) ∈ [0, T ]× R,

we deduce that hl1 (t, x) = hl2 (t, x) and this contradicts our assumption that hl(t)

and hk(t) are different for any l 6= k ∈ 1, 2, . . . , L.

• Hence, we conclude that l1 6= l2 for any l1, l2 ∈ {1, 2, . . . , L} and every x ∈ R.

We get that ∀x ∈ R and Lebesgue almost every t ∈ [0, T ], ∃ at most one l ∈

{1, 2, . . . , L} such that ξl (t, x) = 0. Hence, for Lebesgue a.e. t ∈ [0, T ], ∃ at most

one l ∈ {1, 2, . . . , L} such that ql (t, x) 6= 0.

Observe that

Z2

(
t, Yx

(
t,

L∑
l=1

ql(t)

hl(t)

))
= Z2

(
t,
(
Vx (t, x)− ξl1

)hl1 (t)

ξ (t)

)

= Z2

(
t,
(
Vx (t, x)− ξl2

)hl2 (t)

ξ (t)

)
.

So we can get that

hl1 (t)
(
Vx (t, x)− ξl1

)
= hl2 (t)

(
Vx (t, x)− ξl2

)
.

It’s clear that if ξl1 (t, x) > ξl2 (t, x) for (t, x) ∈ [0, T ]× R, then hl1(t) > hl2(t). In

addition, if we have ξl1 (t, x) = 0 for some t ∈ [0, T ], then hl1(t) < hl2(t) for every

l2 ∈ {1, 2, . . . , L}.

Hence Let l∗ (t) be given as

l∗ (t) = arg min
l∈{1,2...,L}
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Either ql (t, x) = 0, ∀ l ∈ {1, 2, . . . , L} or else ql∗(t) (t, x) > 0 is a solution to

Yx

(
t,
ql∗(t)

hl∗(t)

)
=
hl∗(t)Vx(t, x)

ξ(t)
. (3.23)

By the definition of Z2 and its uniqueness we get that

Z2

(
t, Yx

(
t,
φu∗(t)

ζk∗(t)

))
= Z2

(
t,
hl∗(t)Vx(t, x)

ξ(t)

)
.

Follows that
ql∗(t)

hl∗(t)
= Z2

(
t,
hl∗(t)Vx(t, x)

ξ(t)

)
.

Consequently

q∗(t, x) = Z2

(
t,
h (t)Vx (t, x)

ξ (t)

)
h (t) .

Getting

q∗l (t, x) =


max

{
0,

[
Z2

(
t, hl(t)Vx(t,x)

ξ(t)

)]
hl (t)

}
, if l = l∗ (t)

0 Otherwise.

Finally do for φ∗, differentiate equation (3.20) w.r.t φ

ξ (t)

ζi (t)
YX

(
t, x+

I∑
i=1

pi(t)

ζi (t)

)
− Vx (t, x) .

Using same method previously, we search for

(φ1 (t, x) , . . . , φi (t, x) , β1 (t, x) , . . . , βI (t, x)) ,

veifiying

ξ (t)

ζi (t)
Yx

(
t, x+

I∑
i=1

φn(t)

ζi (t)

)
− Vx (t, x) = −βi,
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Subject to

φi ≥ 0,

βi ≥ 0, i = 1, 2, . . . , I

φiβi = 0.

We have to cases:

• Consider the case when i1 = i2. Then βi1 (t, x) = βi2 (t, x) for some (t, x) ∈

[0, T ] × R, we deduce that ζi1 (t, x) = ζi2 (t, x). This contradicts the fact that all

insurance companies suggest different agreements.

• Therefore, we just has the case where for any i1, i2 ∈ {1, 2, . . . , I} we have i1 6= i2

and every x ∈ R, βi1 (t, x) 6= βi2 (t, x) for Lebesgue almost every t ∈ [0, T ].

Get that at most one i ∈ {1, 2, . . . , I} such that βi (t, x) = 0. So for Lebesgue a.e.

t ∈ [0, T ], ∃ at most one i ∈ {1, 2, . . . , I} such that φi (t, x) 6= 0.

By using the uniqueness function Z2 we get

ζi1 (t)
(
Vx (t, x)− βi1

)
= ζi2 (t)

(
Vx (t, x)− βi2

)
.

Clearly, from above equation if βi1 (t, x) > βi2 (t, x) for (t, x) ∈ [0, T ] × R, then

ζi1(t) > ζi2(t). In addition , if βi1 (t, x) = 0 for some t ∈ [0, T ], then we observe

that ζi1(t) < ζi2(t) for every i2 ∈ {1, 2, . . . , I}.

Hence, Let us define i∗ (t) by

i∗ (t) = arg min
i∈{1,2...,I}

{ζi (t)}.

Either φi (t, x) = 0, ∀ i ∈ {1, 2, . . . , I} or φi∗(t) (t, x) > 0 is a solution to

Yx

(
t, x+

φı∗(t)

ζi∗(t)

)
=
ζi∗(t)Vx(t, x)

ξ(t)
. (3.24)
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Follows

x+
φn∗(t)

ζn∗(t)
= Z2

(
t,
ζn∗(t)Vx(t, x)

ξ(t)

)
.

Yielding

φ∗i (t, x) =


max

{
0,

[
Z2

(
t, ζi(t)Vx(t,x)

ξ(t)

)
− x
]
ζi (t)

}
, if i = i∗ (t)

0 Otherwise.

Now we compute the 2nd derivative w.r.t each variable

Hκκ (t, x, v∗) = Lκκ (t, κ∗) ,

it is negative from 3.7

Hφk1φk2
(t, x, v∗) =

ξ (t)

ζi1(t)ζi2(t)
YZZ

(
t, x+

φ∗k∗(t)

ζk∗(t)

)
,

Note that ζn1(t)ζn2(t) > 0, ξ (t) > 0, and Y is strictly concave so Hφk1φk2
(t, x, v∗)

is negative.

Similarly,

Hql1ql2
(t, x, v∗) =

ξ (t)

hl1(t)hl2
YZ̄Z̄

(
t,
q∗l∗(t)

hl∗(t)

)
< 0,

Finally,

Hθθ (t, x, v∗) = Vxx (t, x)σ2x2.

Notice Vxx (t, x) < 0. Because of If Vxx (t, x) > 0, then H wouldn’t be bounded.

Hence, by the HJB equation, Vt (t, x) or V (t, x) would have to be infinity. This

contradicting the smoothness assumption we put on V. Hence we guarantee that

Hθθ is negative. Hence H has a unique regular interior maximum.

44



3.5 The family of discounted constant relative risk aver-

sion utilities

Here we characterize the optimal strategies in the case of discounted CRRA

utilities function. Thus, we assume the utility functions for the economic agent as

L(t, κ) = e−ρt
κγ

γ
,

Y (t,Υ) = e−ρt
Υγ

γ
, (3.25)

Y (t, Ῡ) = e−ρt
Ῡγ

γ
,

R(X) = e−ρT
Xγ

γ
.

where γ is the risk aversion parameter and γ < 1, γ 6= 0. ρ is positive denoted the

discount rate, where Υ and Ῡ as in (3.3) and (3.4).

In the next section we state the optimal strategies for the family of CRRA utilities.

3.6 Explicit solution

In this section we will introduce the optimal strategies in terms of the parameters

by solving explicitly the partial differential equation. Next proposition is the key

result of this Chapter.

The proof of the next result follows closely to the technique introduced by Mousa

et al. [25] by adding the corresponding updates that fit with our model.
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Proposition 3.1. Suppose that Assumptions 3.1-3.7 hold. Then the optimal

strategies using (3.25) are

κ∗(t, x) =
1

G(t)
(x+ A(t)),

θ∗(t, x) =
β(t)(x+ A(t))

x (1− γ)σ2(t)
,

φ∗i (t, x) =

 max
{

0, ζi(t)(t)
(

Ψ(t) (x+ A(t))− x
)}

, if i = i∗ (t)

0 , otherwise ,

q∗j (t, x) =

 max
{

0, hj(t)(t)
(
E(t) (x+ A(t))

)}
, if j = j∗ (t)

0 , otherwise ,

where

A(t) =

∫ T

t

m(s)e−
∫ s
t (r(v)+ζi∗(v)(v))dvds,

Ψ(t) =
1

G(t)

(
ξ(t)

ζi∗(t)(t)

) 1
1−γ

,

E(t) =
1

G(t)

(
ξ(t)

hγj∗(t)

) 1
1−γ

,

G(t) = e−
∫ T
t Π(v)dv +

∫ T

t

Λ(t)e−
∫ s
t Π(v)dvds,

Π(t) =
ξ(t) + ρ

1− γ
− γ

1− γ
(
r(t) + ζi∗(t)(t)

)
+

γ

(1− γ)2
Γ,

Λ(t) = 1 +

(
ζγi∗(t)(t)

ξ(t)

) 1
γ−1

+

(
hγj∗(t)

ξ(t)

) 1
γ−1

,

Γ(t) =
−β2(t)

2σ2
.
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Proof. Assume the utility function as given in (3.25) From Theorem 3.4 we have

the following condition

Lκ(t, κ)− Vx(t, x) = 0, (3.26)

x2Vxx(t, x)θσ2 + (µ(t)− r(t))xVx(t, x) = 0,

ξ(t)

h∗j(t)
Yx

(
t,
qj∗(t)

h∗j(t)

)
− Vx(t, x) = 0, (3.27)

ξ(t)

ζ∗i (t)
Yx

(
t, x+

pi∗(t)

ζi∗(t)

)
− Vx(t, x) = 0.

Differentiate L with respect to κ

Lκ(t, κ) = e−ρt(κ∗(t, x))γ−1.

Then substitute above equation in (3.26) we get

Vx(t, x) = e−ρt(κ∗(t, x))γ−1.

Rearrange the above equation for κ we have

κ∗(t, x) =

(
eρtVx(t, x)

) −1
(1−γ)

. (3.28)

Note that in the second condition θ∗ is like as in Theorem 3.5

θ∗(t, x) = − β0Vx(t, x)

xVxx(t, x)σ2(t)
. (3.29)

We have now to find the values of φ and q. Differentiate Y with respect to x and

the substitute it in (3.27) we obtain

e−ρt
(
x+

φi∗(t)

ζi∗(t)

)γ−1

=
ζi∗(t)Vx(t, x)

ξ(t)
,

where

Yx(t,Υ) = e−ρtΥγ−1.
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Hence

φ∗i (t, x) =


max

{
0,

((
ζi(t)e

ρtVx(t,x)
ξ(t)

) −1
(1−γ)

− x

)
ζi(t)

}
, if i = i∗ (t)

0 Otherwise.

(3.30)

Similarly for q, Using the final condition we get

e−ρt
(
ql∗(t)

hl∗(t)

)γ−1

=
hl∗(t)

Vx(t, x)
ξ(t).

Consequently

q∗l (t, x) =


max

{
0,

((
hl(t)e

ρtVx(t,x)
ξ(t)

) −1
(1−γ)

)
hl(t)(t)

}
, if l = l∗ (t)

0 Otherwise.

(3.31)

Now we are going to substitute (3.28), (3.29), (3.30) and (3.31) in the HJB

equation (3.13) to find its solution.

sup
ν∈C
H (t, x, κ, φ, q, θ) = sup

κ∈R

{
L (t, κ)− κVx (t, x)

}
+m (t)Vx (t, x)

+r(t)xVx (t, x) + sup
φ∈(R+

0 )I

{
ξ (t)Y

(
t, x+

I∑
i=1

φi(t)

ζi(t)

)
− Vx (t, x)

I∑
i=1

φi(t)

}

+ sup
q∈RL

{
ξ (t)Y

(
t,
q(t)

h(t)

)
− q(t)Vx (t, x)

}

+ sup
θ∈[0,1]

{
x2

2

(
θ(t)σ (t)

)2

Vxx (t, x) + θ(t) (µ (t)− r (t))xVx (t, x)

}
.

Yielding

sup
ν∈C
H (t, x, κ, φ, q, θ) =

e−ρt
(

eρtVx(t, x)

) γ
γ−1

γ
−
(

eρtVx(t, x)

) 1
γ−1

Vx(t, x)
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+
x2

2

(
− β0Vx(t, x)

xVxx(t, x)σ2(t)

)2

σ2(t)Vxx(t, x)− β0Vx(t, x)

xVxx(t, x)σ2(t)
β0(t)xVx(t, x)

+
e−ρtξ(t)

γ

(
ζi∗(t)eρtVx(t, x)

ξ(t)

) γ
γ−1

− Vx(t, x)

((
ζi∗(t)eρtVx(t, x)

ξ(t)

) 1
γ−1

− x

)
ζi∗(t)

+ξ(t)e−ρt

((
hl∗ (t)eρtVx(t,x)

ξ(t)

) 1
γ−1

)γ

γ
− Vx(t, x)

((
hl∗(t)eρtVx(t, x)

(t)

) 1
γ−1

)
hl∗(t).

Rearrange the above terms we get

sup
ν∈C
H(t, x, v) = Vx(t, x)

(
m(t) + x

(
ζi∗(t) + r(t)

))
+
−β2

0(t)

2σ2(t)

V 2
x (t, x)

Vxx(t, x)

+e
ρt
γ−1

(
1− γ
γ

)(
Vx(t, x)

) γ
γ−1

[
1 +

(
ζi∗(t)

) γ
γ−1

+

(
hl∗(t)

) γ
γ−1

(
ξ(t)

) 1
γ−1

]
. (3.32)

For simplicity let

Λ(t =

[
1 +

(
ζi∗(t)

) γ
γ−1

+

(
hl∗(t)

) γ
γ−1

(
ξ(t)

) 1
γ−1

]
.

Γ(t) =
−β2

0(t)

2σ2(t)
.

Equation (3.32) can be rewritten as

Vt(t, x)− ξ(t)V (t, x) + e
ρt
γ−1

(
1− γ
γ

)(
Vx(t, x)

) γ
γ−1

Λ(t)

+ Vx(t, x)

(
m(t) + x

(
ζi∗(t) + r(t)

))
+ Γ(t)

V 2
x (t, x)

Vxx(t, x)
= 0, (3.33)

with the terminal condition

V (T, x) = R(x). (3.34)
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In order to solve equation (3.33) we do the following steps

• Consider the ansatz function as

V (t, x) =
a(t)

γ

(
A(t) + x

)γ
,

• Find the derivatives of Vt, Vx and Vxx

Vt(t, x) = a(t)

(
A(t) + x

)γ−1
dA(t)

dt
+

1

γ

(
x+ A(t)

)γ
da(t)

dt
,

Vx(t, x) = a(t)

(
A(t) + x

)γ−1

,

Vxx(t, x) =
(
γ − 1

)
a(t)

(
A(t) + x

)γ−2

.

(3.35)

• Substitute above partial derivative in equation (3.33) to solve it, we get

a(t)

(
A(t) + x

)γ−1
dA(t)

dt
+

1

γ

(
A(t) + x

)γ
da(t)

dt

+ a
ρt
γ−1

(
1− γ
γ

)(
a(t)

(
A(t) + x

)γ−1
) γ

γ−1

L(t)

+ a(t)

(
A(t) + x

)γ−1(
m(t) + x

(
ζi∗(t) + r(t)

))

+ Γ(t)

(
a(t)

(
A(t) + x

)γ−1
)2

(
γ − 1

)
a(t)

(
A(t) + x

)γ−2 − ξ(t)
a(t)

γ

(
A(t) + x

)γ
= 0.
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• Multiply previous equation

(
x+ A(t)

)−γ
we obtain

a(t)

x+ A(t)

dA(t)

dt
+
da(t)

dt

1

γ
− ξ(t)a(t)

γ

+ e
−ρt
1−γ

(
1− γ
γ

)(
a(t)

) −γ
1−γ

L(t)

+
a(t)

x+ A(t)

(
i(t) + x

(
ζk∗(t) + r(t)

))
+ Γ(t)

a(t)

γ − 1
= 0.

• Add r(t)a(t)A(t)
A(t)+x

and ζi∗ (t)a(t)A(t)
A(t)+x

to both sides we get

1

γ

da(t)

dt
− ξ(t)a(t)

γ
+

a(t)

A(t) + x

dA(t)

dt
+
m(t)a(t)

A(t) + x

+
xr(t)a(t)

x+ A(t)
+
r(t)a(t)A(t)

x+ A(t)
+
xζi∗(t)u(t)

x+ A(t)

+
ζi∗(t)u(t)A(t)

x+ A(t)
+ e

−
1−γ

(
1− γ
γ

)(
u(t)

) −γ
1−γ

Λ(t+ Γ(t)
G(t)

γ − 1

=
r(t)a(t)A(t)

x+ A(t)
+
ζi∗(t)u(t)A(t)

x+ A(t)
.

• To solve previous equation we separated it in two independent boundary value

problem one for a(t) and other for A(t)

1

γ

da(t)

dt
− ξ(t)a(t)

γ
+ Γ(t)

a(t)

γ − 1
+ e

−ρt
1−γ

(
1− γ
γ

)
a(t)

−γ
1−γ Λ(t)

+ ζi∗(t)a(t) + r(t)a(t) = 0. (3.36)

Rearrange above equation we obtain

(
ζi∗(t) + r(t) +

Γ(t)

γ − 1
− ξ(t)

γ

)
a(t) + e

−ρt
1−γ

(
1− γ
γ

)
(a(t)

−γ
1−γ Λ(t)) +

1

γ

da(t)

dt
= 0,

a(T ) = e−ρT . (3.37)
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And for A(t)

(t)

A(t) +X

dA(t)

dt
+
m(t)a(t)

x+ A(t)
− r(t)a(t)A(t)

x+ A(t)
− ζi∗(t)u(t)A(t)

x+ A(t)
= 0.

Multiply above equation we get

dA(t)

dt
+ A(t)

(
− r(t)− ζi∗(t)

)
+m(t) = 0.

A(T ) = 0. (3.38)

• Let us start solving equation (3.38). Rewrite previous equation as:

dA(t)

dt
+ A(t)

(
− r(t)− ζi∗(t)

)
= −m(t)

The above equation is 1st ODE which can be solve by integrating factor and the

solution is in the form:

A(t) =
1

µ(t)

(∫ T

t

µ(t)(−(m(s))ds+ C

)
,

where

µ(t) = e−
∫ s
t [r(u)+ζ(u)]du.

Hence,

A(t) = e
∫ s
t [r(u)+ζ(u)]du

(∫ t

T

e−
∫ s
t [r(u)+ζ(u)]du(−m(s))ds+ C

)
.

Hence,

A(t) = e
∫ s
t [r(u)+ζi∗ (u)]du

(∫ t

T

e
∫ s
t [−r(u)−ζi∗ (u)]du(−(m(s))ds+ C

)
.

Using boundary condition we get:

A(t) =

∫ T

t

m(s)e−
∫ s
t (r(u)+ζi∗u(u))duds.
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• To solve equation (3.36) we assume that the solution is on the form:

a(t) = e−ρt(G(t))1−γ,

a(T ) = e−ρT . (3.39)

Differentiate a(t) with respect to time t, we get

da(t)

dt
= e−ρt(1− γ)(G(t))−γ

dG(t)

dt
+ (G(t))1−γ (−ρe−ρt

)
.

Substitute the derivative of a(t) in equation (3.36) we obtain:

0 =
1

γ

(
e−ρt(1− γ)

(
G(t)

)−γ dG(t)

dt

− ρe−ρt
(
G(t)

)1−γ
)

+

(
ζk∗(t) + r(t) +

Γ(t)

γ − 1
− ξ(t)

γ

)
e−ρt

(
G(t)

)1−γ

+ e
−ρt
1−γ

(
1− γ
γ

)(
e−ρt

(
G(t)

)1−γ) −γ
1−γ

Λ(t).

Multiply the previous equation by γ
1−γ , we get;

e−ρt(G(t))−γ dG(t)
dt

+ (G(t))1−γ
(
−ρ

1−γ e−ρt
)

γ
1−γ

(
ζk∗(t) + r(t) + Γ(t)

γ−1
− ξ(t)

γ

)
e−ρt

(
G(t)

)1−γ

+e−ρtG(t)−γΛ(t) = 0.

Divide the above equation by e−ρt we obtain:

G(t)−γ dG(t)
dt

+ (G(t))1−γ −ρ
1−γ +G(t)−γΛ(t)

γ
1−γ

(
ζk∗(t) + r(t) + Γ(t)

γ−1
− ξ(t)

γ

)
e−ρt

(
G(t)

)1−γ
= 0.
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Divide by G(t)−γ), we get:

dG(t)

dt
+G(t)

−ρ
1− γ

+ Λ(t)
γ

1− γ

(
ζk∗(t) + r(t) +

Γ(t)

γ − 1
− ξ(t)

γ

)
e−ρtG(t) = 0.

Rearrange above equation:

dG(t)

dt
+

(
ξ(t) + ρ

1− γ
− 1

2
γ

(
µ(t)− r(t)
(1− γ)σ(t)

)2

− γ

1− γ
(r(t)+ζi∗(t))

)
+Λ(t) = 0. (3.40)

For simplify let:

Π(t) ,
ξ(t) + ρ

1− γ
− 1

2
γ

(
µ(t)− r(t)
(1− γ)σ(t)

)2

− γ

1− γ
(r(t) + ζi∗(t)), (3.41)

Equation (3.40) can be rewritten as:

dG(t)

dt
− Π(t)G(t) + Λ(t) = 0.

G(T ) = 1.

Above equation is linear 1st ODE and its solution given by:

G(t) = e
∫ t
T Π(u)du

(∫ t

T

−Λ(s)e
∫ s
T −Π(u)duds+ c

)
.

From G(T ) = 1 we have:

G(t) = e−
∫ T
t Π(u)du +

∫ T

t

Λ(s)(s)e
∫ T
s −Π(u)due

∫ t
T Π(u)duds.

Thus

G(t) = e−
∫ T
t Π(u)du +

∫ T

t

Λ(s)e−
∫ s
t Π(u)duds. (3.42)

Finally :

a(t) = e−ρt
(

e−
∫ T
t Π(u)du +

∫ T

t

Λ(t)(s)e−
∫ s
t Π(u)duds

)1−γ

. (3.43)
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• Substitute the value of Vx from (3.35)in (3.28) we obtain:

κ∗(t, x) =
1

G(t)
(A(t) + x).

• Substitute the value of Vx and Vxx from (3.35) in (3.29) we obtain:

θ∗(t, x) =
β(t)(A(t)) + x

x (1− γ)σ2(t)
.

• For φ, assume the case when i = i∗. After that substitute the value of Vx we get:

φ∗i (t, x) =


(
ζu∗(t)

) 1
γ−1

(G(t))−1
(
x+ A(t)

)
(
ξ(t)

) 1
γ−1

− x

 ζu∗(t).

Simplify it by assume that:

Ψ(t) =
1

G(t)

(
ζu∗(t)

ξ(t)

) 1
γ−1

.

So we have:

φ∗i (t, x) =

 max
{

0, ζi(t)(t)
(

Ψ(t) (x+ A(t))− x
)}

, if i = i∗ (t)

0 , otherwise .

• Similarly, we can find q by assuming the case where j = j∗ and substitute the

value of Vx we get:

q∗(t, x) =

(
hj∗(t)

) 1
γ−1

(G(t))−1
(
x+ A(t)

)
(
ξ(t)

) 1
γ−1

hj(t).

Simplify it by assume that:

E(t) =
1

G(t)

(
ξ(t)

hγj∗(t)

) 1
1−γ

.
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Thus

q∗j (t, x) =

 max
{

0, hj(t)(t)
(
E(t) (x+ A(t))

)}
, if j = j∗ (t)

0 , otherwise .

Hence, we conclude the proof.
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Chapter 4

Generalized form: optimal strategies

within a social market of L welfare

providers and financial market of N

risky assets

4.1 General framework

Now, we are looking for the explicit solution in the case where the economic

agent has access to L welfare providers and investing her saving in a financial

market consists of N risky assets instead of only one security asset. To proceed we

start by generalizing the industrial market models.
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4.1.1 Generalized industrial market models

In this section , we introduce the financial market comprised of N risky assets.

Also we state the corresponding wealth process.

4.1.1.1 Financial market with N risky assets

Following the introduction represented in Chapter 3, Let (Ω,F ,P) be a complete

probability space supplied with a filtration F = (Ft)t∈[0,T ] generated by M- dimen-

sional BM W (·), σ(W (s), s ≤ t) for t ≥ 0.

Consider the FM comprised of a risk-free asset and N risky securities, evolves

according to the DE:

dS0(t) = r(t)S0(t)dt, (4.1)

dSn(t)

Sn(t)
= µn(t)dt+

M∑
m=1

σnm(t)dWm(t), (4.2)

where S0(0) = s0 is a positive constant, r(t) is positive interest rate,

W (t) =



W1(t)

W2(t)

.

.

.

WM(t)


∈ RM , (4.3)
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is M− dimensional BM,

µ(t) =



µ1(t)

µ2(t)

.

.

.

µN(t)


∈ RN , (4.4)

is the vector of the risky-assets appreciation rates, and

σ(t) = σnm(t)1≤n≤N,1≤m≤M

is the N×M matrix of risky-assets volatilises where n and m are natural numbers.

Assumption 4.1. [25] Assume that Assumption 3.1 hold. Besides to that

• The matrix (σ(t))Tσ(t) is non-singular matrix for Lebesgue almost all t ∈ [0, T ]

verifies
M∑
m=1

N∑
n=1

∫ T

0

σ2
nm (t) dt <∞.

• ∃(Ft)0≤t≤T -progressively measurable π(t) ∈ RM, named the market price of risk,where

the risk premium

β(t) =



µ1(t)− r(t)

µ2(t)− r(t)

.

.

.

µN(t)− r(t)


∈ RN , (4.5)

is attached to π(t) by

β(t) = π(t)σ(t) a.s.

Moreover, we assume ∫ T

0

π2(t)dt <∞ a.s,
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and the following exponential martingale condition holds

E[e−
∫ T
0 π(t)dW (t)− 1

2

∫ T
0 π2(t)dt] = 1 .

We assume that all assumptions and concepts in this Chapter are the same as in

Chapter 3.

4.1.2 Generalized wealth process

In this subsection, we state the wealth process for the economic agent who start

with initial value x0 and take an income m(t), where t ∈ [0,min{τ, T}] .

Assume that Assumptions 3.5, 3.6 holds. Now, we can define the wealth process

for the economic agent for 0 ≤ t ≤ min{τ, T} as

X(t) =x+

∫ t

0

(
m(s)− κ(s)−

I∑
i=1

φi(s)−
L∑
l=1

ql(s)

)
ds

+
N∑
n=0

∫ t

0

θn(s)X(s)

Sn(s)
dSn(s).

Above equation can be rewrite as

X(t) =x+

∫ t

0

(
m(s)− κ(s)−

I∑
i=1

φi(s)−
L∑
l=1

ql(s)

)
ds

+

∫ t

0

θ0(s)X(s)

S0(s)
dS0(s) +

N∑
n=1

∫ t

0

θn(s)X(s)

Sn(s)
dSn(s).

Substitute (4.1) and(4.2) in above equation we get

X(t) =x+

∫ t

0

(
m(s)− κ(s)−

I∑
i=1

φi(s)−
L∑
l=1

ql(s)

)
ds

+

∫ t

0

θ0(s)X(s)

S0(s)
r(s)S0(s)ds

+
N∑
n=1

∫ t

0

θn(s)X(s)

Sn(s)
Sn(s)

(
µn(s)ds+

M∑
m=1

σnm(t)dWm(s)

)
.
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Rearrange above equation we have

X(t) =x+

∫ t

0

(
m(s)− κ(s)−

I∑
i=1

φi(s)−
L∑
l=1

ql(s)

)
ds

+

∫ t

0

θ0(s)X(s)r(s)ds

+
N∑
n=1

∫ t

0

θn(s)X(s)

(
µn(s)ds+

M∑
m=1

σnm(t)dWm(s)

)
.

Differentiate above equation relative to t we obtain

dX(t) =

(
m(t)− κ(t)−

i∑
i=1

φi(t)−
L∑
l=1

ql(t) + (θ0(t)r(t)

+
N∑
n=1

θn(t)µn(t)

)
X(t)

)
dt (4.6)

+
N∑
n=1

θn(t)X(t)
M∑
m=1

σnm(t)dWm(t).

4.2 Generalized stochastic optimal control problem

In this section, we will illustrate the optimal control problem (OCP) for the

economic agent whose aim is to get the optimal strategies which gives her best

advantage.

Denote C (0, x) the set of all admissible decision strategies (κ (·) , φ (·) , q (·) , θ (·)),

L (t, ·) represent the utility function for the economic agent’s family consumption

level at time t ∈ [0, T ], R (·) represent the utility function for the terminal wealth

at pension time T , and the utility function for the size of the economic agent’s

legacy at time t ∈ [0, T ] is denoted by Y (t, ·) . Recall that that total legacy as said

in previous subsection. The expected utility defined by:

E0,x

[∫ T∧τ

0

L (k, c (k)) dk +
(
Y (τ,Υ (τ)) + Y (τ, Ῡ (τ)

)
I[0,T ] (τ)
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+R (X (T )) I(T,∞) (τ)

]
.

As Chapter 3, we resort to the DPP in order to transform our complicated problem

to an easier problem whose solution is a recursive relation.

We can generalization previous expected utility in the last section as

J (t, x; v) = Et,x

[∫ T∧τ

t

L (k, κ (k)) dk + (Y (τ,Υ (τ)) + Y
(
τ, Ῡ (τ)

)
)I[0,T ] (τ)

+R
(
Xv
t,x (T )

)
I(T,∞) (τ) |τ > t,Ft

]
, (4.7)

where Xv
t,x (S) is the solution of the stochastic differential equation(SDE) (4.6),

and C(t, x) is the set of admissible decision strategies starting at time t.

4.3 Dynamic programming principle

In this section we will state the DPP Lemma and derive the corresponding HJB

equation which help us to get the solution and the value function. Define

V (t, x) = sup
v∈C(t,x)

J (t, x; v) ,

where

v = (κ (·) , φ (·) , q(·), θ (·)) ∈ C (t, x) .

Using Lemma 3.1 and DPP 3.3 we use the same technique as in previous section to

drive the corresponding HJB equation, a 2nd order nonlinear PDE whose solution

is the desired objective function, for the general case. The proof of the following

general theorem follows similarly as the proof of Theorem 3.4.
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Theorem 4.1. (Shrateh-Mousa Th1). Suppose that V is of class C1,2([0, T ] ×

R,R). Hence V verifies the HJB equation

 Vt(t, x)− ξ(t)V (t, x) + (κ,θ,φ,q)∈R×RN×(R+
0 )I×RL H(t, x;κ, θ, φ, q) = 0

V (T, x) = R(x),

where the Hamiltonian function H is given by

H(t, x; v) =

(
m(t)− κ(t)−

I∑
i=1

φi −
L∑
l=1

ql

+

(
r(t) +

N∑
n=1

θn (µn(t)− r(t))

)
x

)
Vx(t, x)

+
x2

2

M∑
m=1

(
N∑
n=1

θnσnm(t)

)2

Vxx(t, x)

+ L(t, κ) + ξ(t)Y

(
t, x+

I∑
i=1

φi(t)

ζi(t)

)
+ Y

(
t,

L∑
l=1

ql(t)

hl (t)

)
.

In addition,

v∗ = (κ∗ (·) , φ∗ (·) , q∗(·), θ∗ (·)) ∈ C (t, x) ,

is optimal if and only if for a.e. s ∈ [t, T ] we have

Vs (s,X∗(s))− ξ(s)V (s,X∗(s)) +H (s,X∗(s); v∗) = 0.

4.4 Generalized optimal strategies in terms of the value

function

In this subsection we want to find the optimal strategies such as the optimal

insurance premium, optimal portfolio, optimal consumption, and optimal welfare

policy for the economic agent.

Recall that we denote the utility function describing the economic agent’s consump-

tion by L(t, ·), and the utility function describing the size of the economic agent’s

legacy by Y (t, ·) for all 0 ≤ t ≤ T . Also, assume Assumption 3.7 hold. Let Lx(t, ·)
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and Yx(t, ·) symbolised the derivatives of L(t, ·) and Y (t, ·) respectively. So the

derivatives are invertible.

Let us define a unique function Z1, Z2 as we define it in Chapter 3.

Z1 (t, Lx(t, x)) = x and Lx(t, Z1(t, x)) = x, (4.8)

Z2(t, Yx(t, x)) = x and Yx(t, Z2(t, x)) = x, (4.9)

where

Z1(t, x) : [0, T ]× [0,∞)→ [0,∞),

and

Z1(t, x) : [0, T ]× [0,∞)→ [0,∞),

∀t ∈ [0, T ] and x ∈ R+
0 .

Next theorem give us the formula of the optimal strategies of the objective function

and its derivatives. The proof of the next result follows closely to the technique

introduced by Mousa et al. [25] by adding the corresponding updates that fit with

our model.

Theorem 4.2. (Shrateh-Mousa Th2). Let V is of class C1,2([0, T ]× R,R). As a

result the Hamiltonian function H given in the statement of Theorem 4.1 has a

unique maximum

v∗ = (κ∗(·), θ∗(·), φ∗(·)) ∈ C(t, x).

In addition, the optimal strategies are

κ∗(t, x) = Z1 (t, Vx(t, x)) ,

θ∗(t, x) = − Vx(t,x)
xVxx(t,x)

εβ(t),

and, for each i ∈ {1, 2, . . . , I}, we have that
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φ∗i (t, x) =


max {0, [Z2 (t, ζi(t)(ξ(t))

−1Vx(t, x))− x] ζi(t), } , if i = i∗(t)

0 otherwise.

where

i∗(t) = arg min
i∈{1,2,...,I}

{ζi(t)}

and, for each l ∈ {1, 2, . . . , L}, we have that

q∗(t, x) =


max

{
0,

[
Z2

(
t, hl(t)Vx(t,x)

ξ(t)

)
hl (t)

}
, if l = l∗ (t)

0 otherwise.

where

l∗ (t) = arg min
l∈{1,2...,L}

{hl (t)}.

where ε is the non-singular square matrix
(
σσT

)−1
and β(t) same as (4.5).

Proof. Note that κ∗(·), φ∗(·), and q∗(·) are same as Theorem 3.5. So the different

is when we looking for θ∗(·).

Let us separate H as follow

sup
(κ,θ,φ,q)∈RN+1×RN×(R+

0 )
K
×RL

H(t, x; v)

= sup
κ∈R
{L(t, κ)− cVx(t, x)}+ r(t)xVx(t, x)

+ sup
φ∈(R+

0 )
I

{
ξ(t)Y

(
t, x+

I∑
i=1

φi
ζi(t)

)
− Vx(t, x)

I∑
i=1

φi

}

+m(t)Vx(t, x) + sup
θ∈RN

x2

2

M∑
m=1

(
N∑
n=1

θnσnm(t)

)2

×Vxx(t, x) +
N∑
n=1

θn (µn(t)− r(t))xVx(t, x)

}

+ sup
q∈RL

{
ξ (t)Y

(
t,

L∑
l=1

ql(t)

hl (t)

))
−

L∑
l=1

ql(t)Vx (t, x)

}

(4.10)

We start with finding the optimal strategy for insurance premium payments and

social welfare premium payments since its similarly to Chapter 3. we use the
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Kuhn-Tucker conditions to search for a solution

(q1 (t, x) , . . . , qL (t, x) , λ1 (t, x) , . . . , λL (t, x))),

(φ1 (t, x) , . . . , φI (t, x) , µ1 (t, x) , . . . , µK (t, x)) .

To the following qualities and inequalities

ξ (t)

hl (t)
YX

(
t,

L∑
l=1

ql(t)

hl (t)

)
− Vx (t, x) = −λl,

subject to:

ql ≥ 0,

λl ≥ 0, l = 1, 2, . . . , L

qlλl = 0.

And
λ (t)

ζi (t)
YZ

(
t, x+

I∑
i=1

φi(t)

ζi (t)

)
− Vx (t, x) = −µi,

Subject to

φi ≥ 0,

µi ≥ 0, i = 1, 2, . . . , I

φiµi = 0.

Do similarly as Chapter 3, we get the result in proposition.

Now, we want to find the optimal strategies for the consumption c∗(t) Computing

the first-order conditions with respect to κ we obtain the following:

Lκ (t, κ∗)− Vx (t, x) = 0.

Or

Lκ (t, κ∗) = Vx (t, x)
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From the definition of Z1 and its uniqueness we get:

κ1(t, Lκ(t, κ
∗)) = Z1(t, Vx(t, x)).

Thus

κ∗ (t, x) = Z1(t, Vx(t, x)).

To find θ∗ Computing the first-order conditions with respect to θ we get:

xVx(t, x)β + x2Vxx(t, x)σσT θ∗ = 0RN

OR

xVx(t, x)β = −x2Vxx(t, x)σσ>θ∗

where β denotes the risk premium given in origin of RN .

Rearrange above equation we have

θ∗(t, x) = − Vx(t, x)

xVxx(t, x)
εβ(t)

Now we compute the 2nd derivative w.r.t each variable

Hκκ (t, x, v∗) = Lκκ (t, κ∗) ,

it is negative from 3.7

Hφi1φi2
(t, x, v∗) =

ξ (t)

ζi1(t)ζi2(t)
YZZ

(
t, x+

φ∗i∗(t)

ζi∗(t)

)
,

Note that ζi1(t)ζi2(t) > 0, ξ (t) > 0, and Y is strictly concave so Hφi1φi2
(t, x, v∗)

is negative.

Similarly,

Hql1ql2
(t, x, v∗) =

ξ (t)

hl1(t)hl2
YZ̄Z̄

(
t,
q∗l∗(t)

hl∗(t)

)
< 0,

Finally,

Hθθ (t, x, v∗) = Vxx (t, x)σσTx2.
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Notice Vxx (t, x) < 0. Because of If Vxx (t, x) > 0, then H wouldn’t be bounded.

Hence, by the HJB equation, Vt (t, x) or V (t, x) would have to be infinity. This

contradicting the smoothness assumption we put on V. Hence we guarantee that

Hθθ is negative. Hence H has a unique regular interior maximum.

4.5 Explicit solution for the generalized optimal strategies

In this section, we represent the optimal strategies in the case of discounted

CRRA utilities function (3.25).

In the next proposition we state the optimal strategies for the family of CRRA

utilities. The proof of the next result follows closely to the technique introduced by

Mousa et al. [25] by adding the corresponding updates that fit with our model.

Proposition 4.1. (Shrateh-Mousa Th3). Let ε is the non-singular square matrix(
σσT

)−1
The optimal strategies in the case of discounted CRRA utilities function

are

κ∗(t, x) =
1

G(t)
(x+ A(t)),

θ∗(t, x) =
1

1− γ
x+ A(t)

x
εβ(t),

φ∗i (t, x) =

 max
{

0, ζi(t)(t)
(

(Ψ(t)− 1)x+ Ψ(t)A(t)
)
} , if i = i∗ (t)

0 , otherwise ,

q∗j (t, x) =

 max
{

0, hj(t)(t)
(
E(t) (x+ A(t))

)}
, if j = j∗ (t)

0 , otherwise. ,
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where

A(t) =

∫ T

t

m(s)e(−
∫ s
t (r(v)+ζi∗(v)(v))dv)ds,

Ψ(t) =
1

G(t)

(
ξ(t)

ζi∗(t)

)1/(1−γ)

,

G(t) = e−
∫ T
t Π(u)du +

∫ T

t

Λ(s)e−
∫ s
t Π(u)duds,

Π(t) =
ξ(t) + ρ

1− γ
− γ

1− γ
(
r(t) + ζi∗(t)(t)

)
− γ

(1− γ)2
Γ(t),

Λ(t) = 1 +

(
ζγi∗(t)(t)

ξ(t)

) 1
γ−1

+

(
hγj∗(t)

ξ(t)

) 1
γ−1

,

Γ(t) = βT (t)ξβ(t)− 1

2

∥∥σT ξβ(t)
∥∥2
,

E(t) =
1

G(t)

(
ξ(t)

hγj∗(t)

) 1
1−γ

.

Proof. Assume that the utility function are given as (3.25). From Theorem 4.1 we

have the following condition

Lκ(t, κ)− Vx(t, x) = 0, (4.11)

x2Vxx(t, x)θσσT + (µ(t)− r(t))xVx(t, x) = 0, (4.12)

ξ(t)

h∗j t)
Yx

(
t,
qj∗(t)

h∗j(t)

)
− Vx(t, x) = 0, (4.13)

ξ(t)

ζ∗i (t)
Yx

(
t, x+

φi∗(t)

ζi∗(t)(t)

)
− Vx(t, x) = 0. (4.14)

Differentiate L with respect to κ

Lκ(t, κ) = e−ρt(κ∗(t, x))γ−1.

Then substitute above equation in (4.11) we get

Vx(t, x) = e−ρt(κ∗(t, x))γ−1.

Rearrange the above equation for κ we have

κ∗(t, x) =

(
eρtVx(t, x)

) −1
(1−γ)

. (4.15)
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From equation (4.12)

θ∗(t, x) = − Vx(t, x)

xVxx(t, x)
εβ(t). (4.16)

To find the values of φ and q. Differentiate Y with respect to x and the substitute

it in (4.13) we obtain

e−ρt
(
x+

φi∗(t)

ζi∗(t)

)γ−1

=
φi∗(t)Vx(t, x)

ξ(t)
,

where

Yx(t,Υ) = e−ρtΥγ−1.

Hence

φ∗i (t, x) =


max

{
0,

((
ζi(t)e

ρtVx(t,x)
ξ(t)

) −1
(1−γ)

− x

)
ζI(t)

}
, if i = i∗ (t)

0 otherwise.

(4.17)

Now do the similar for q

e−ρt
(
ql∗(t)

hl∗(t)

)γ−1

=
hl∗(t)

Vx(t, x)
ξ(t).

Consequently

q∗j (t, x) =


max

{
0,

((
hj(t)e

ρtVx(t,x)

ξ(t)

) −1
(1−γ)

)
hj(t)(t)

}
, if j = j∗ (t)

0 otherwise.

(4.18)

Substitute all above equations(4.15, 4.16, 4.17), and (4.18) in the HJB equation

we get

sup
(κ,φ,q,θ)∈R×(R+

0 )I×RL×RN
H (t, x, κ, φ, q, θ) =

e−ρt
(

eρtVx(t, x)

) γ
γ−1

γ
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−
(

eρtVx(t, x)

) 1
γ−1

Vx(t, x) +
1

2

V 2
x

Vxx

∥∥σT ξβ(t)
∥∥2 − V 2

x

Vxx
βT ξβ

+
e−ρtξ(t)

γ

(
ζi∗(t)eρtVx(t, x)

ξ(t)

) γ
γ−1

− Vx(t, x)

((
ζi∗(t)eρtVx(t, x)

ξ(t)

) 1
γ−1

− x

)
ζi∗(t)

+ξ(t)e−ρt

((
hl∗ (t)eρtVx(t,x)

ξ(t)

) 1
γ−1

)γ

γ
− Vx(t, x)

((
hl∗(t)eρtVx(t, x)

ξ(t)

) 1
γ−1

)
hl∗(t).

Rearrange the above terms we get

sup
(κ,φ,q,θ)∈R×(R+

0 )I×RL×RN
H (t, x, κ, φ, q, θ)

= e
ρt
γ−1

(
1− γ
γ

)(
Vx(t, x)

) γ
γ−1

[
1 +

(
ζi∗(t)

) γ
γ−1

+

(
hl∗(t)

) γ
γ−1

(
ξ(t)

) 1
γ−1

]

+ Vx(t, x)

(
m(t) + x

(
ζi∗(t) + r(t)

))

− V 2
x

Vxx

(
βT ξβ − 1

2

∥∥σT ξβ(t)
∥∥2
)
.

Let

Λ =

[
1 +

(
φi∗(t)

) γ
γ−1

+

(
hl∗(t)

) γ
γ−1

(
ξ(t)

) 1
γ−1

]
.

Γ(t) = βT (t)ξβ(t)− 1

2

∥∥σT ξβ(t)
∥∥2
.

The HJB equation become

Vt(t, x)− ξ(t)V (t, x) + e
ρt
γ−1

(
1− γ
γ

)(
Vx(t, x)

) γ
γ−1

Λ

+ Vx(t, x)

(
m(t) + x

(
ζi∗(t) + r(t)

))
+ Γ(t)

V 2
x (t, x)

Vxx(t, x)
= 0, (4.19)
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where Λ,Γ as given in the statement of the proposition with the terminal condition

V (T, x) = R(x). (4.20)

In order to solve equation (4.19) we do the following steps:

• Consider the ansatz function as

V (t, x) =
a(t)

γ

(
x+ A(t)

)γ
.

• Find the derivatives of Vt, Vx and Vxx

Vt(t, x) = a(t)

(
x+ A(t)

)γ−1
dA(t)

dt
+

1

γ

(
x+ A(t)

)γ
da(t)

dt
,

Vx(t, x) = a(t)

(
x+ A(t)

)γ−1

,

Vxx(t, x) =
(
γ − 1

)
a(t)

(
x+ A(t)

)γ−2

.

(4.21)

• Substitute above partial derivative in equation (4.19) to solve it, we get

a(t)

(
x+ A(t)

)γ−1
dA(t)

dt
+

1

γ

(
x+ A(t)

)γ
da(t)

dt
− ξ(t)a(t)

γ

(
x+ A(t)

)γ
+ e

ρt
γ−1

(
1− γ
γ

)(
a(t)

(
x+ A(t)

)γ−1
) γ

γ−1

Λ

+ a(t)

(
x+ A(t)

)γ−1(
m(t) + x

(
ζu∗(t) + r(t)

))

+ Γ(t)

(
a(t)

(
x+ A(t)

)γ−1
)2

(
γ − 1

)
a(t)

(
x+ A(t)

)γ−2 = 0.
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• Multiply previous equation

(
x+ A(t)

)−γ
we obtain

a(t)

x+ A(t)

dA(t)

dt
+

1

γ

da(t)

dt
− ξ(t)a(t)

γ

+ e
−ρt
1−γ

(
1− γ
γ

)(
a(t)

) −γ
1−γ

Λ

+
a(t)

x+ A(t)

(
m(t) + x

(
ζu∗(t) + r(t)

))
+ Γ(t)

a(t)

γ − 1
= 0.

• Add r(t)a(t)A(t)
x+A(t)

and ζi∗ (t)a(t)A(t)
x+A(t)

to both sides we get

1

γ

da(t)

dt
− ξ(t)a(t)

γ
+

a(t)

x+ A(t)

dA(t)

dt
+
m(t)a(t)

x+ A(t)

+
xr(t)a(t)

x+ A(t)
+
r(t)a(t)A(t)

x+ A(t)
+
xζi∗(t)a(t)

x+ A(t)

+
ζi∗(t)a(t)A(t)

x+ A(t)
+ e

−
1−γ

(
1− γ
γ

)(
a(t)

) −γ
1−γ

Λ + Γ(t)
a(t)

γ − 1

=
r(t)a(t)A(t)

x+ A(t)
+
ζi∗(t)a(t)A(t)

x+ A(t)
.

• To solve previous equation we separated it in two independent boundary value

problem one for a(t) and other for A(t)

1

γ

da(t)

dt
− ξ(t)a(t)

γ
+ Γ(t)

a(t)

γ − 1
+ e

−ρt
1−γ

(
1− γ
γ

)
a(t)

−γ
1−γ Λ

+ζi∗(t)a(t) + r(t)a(t) = 0.

Rearrange above equation we obtain

(
ζi∗(t) + r(t) +

Γ(t)

γ − 1
− ξ(t)

γ

)
a(t) + e

−ρt
1−γ

(
1− γ
γ

)
(a(t)

−γ
1−γ Λ +

1

γ

da(t)

dt
= 0,

a(T ) = e−ρT . (4.22)
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And for A

a(t)

x+ A(t)

dA(t)

dt
+
m(t)a(t)

x+ A(t)
− r(t)a(t)A(t)

x+ A(t)
− ζi∗(t)a(t)A(t)

x+ A(t)
= 0.

Multiply above equation we get

dA(t)

dt
+ A(t)

(
− r(t)− ζi∗(t)

)
+m(t) = 0,

A(T ) = 0. (4.23)

• Let us start solving equation (4.23) rewrite previous equation as:

dA(t)

dt
+ A(t)

(
− r(t)− ζi∗(t)

)
= −m(t).

The above equation is first order linear differential equation which can be solve by

integrating factor and the solution is in the form:

A(t) =
1

µ(t)

(∫ T

t

µ(t)(−(m(s))ds+ C

)
,

where

µ(t) = e−
∫ s
t [r(u)+ζ(u)]du.

Hence,

A(t) = e
∫ s
t [r(u)+ζ(u)]du

(∫ T

t

e−
∫ s
t [r(u)+ζ(u)]du(−m(s))ds+ C

)
.

Hence,

A(t) = e
∫ s
t [r(u)+ζi∗ (u)]du

(∫ T

t

e
∫ s
t [−r(u)−ζi∗ (u)]du(−(m(s))ds+ C

)
.

Using boundary condition we get:

A(t) =

∫ T

t

m(s)e−
∫ s
t (r(u)+ζi∗u(u))duds.
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• To solve equation (4.22) we assume that the solution is on the form:

a(t) = e−ρt(G(t))1−γ,

a(T ) = e−ρT . (4.24)

Differentiate a(t) with respect to time t, we obtain;

da(t)

dt
= e−ρt(1− γ)(G(t))−γ

dG(t)

dt
+ (G(t))1−γ (−ρe−ρt

)
.

Substitute the derivative of a(t) in equation (4.22) we obtain:

1

γ

(
e−ρt(1− γ)

(
G(t)

)−γ dG(t)

dt
− ρe−ρt

(
G(t)

)1−γ
)

+

(
ζi∗(t) + r(t) +

Γ(t)

γ − 1
− ξ(t)

γ

)
e−ρt

(
G(t)

)1−γ

+e
−ρt
1−γ

(
1− γ
γ

)(
e−ρt

(
G(t)

)1−γ) −γ
1−γ

Λ = 0.

Multiply the previous equation by γ
1−γ , we get;

e−ρt(G(t))−γ dG(t)
dt

+ (G(t))1−γ
(
−ρ

1−γ e−ρt
)

γ
1−γ

(
ζk∗(t) + r(t) + Γ(t)

γ−1
− ξ(t)

γ

)
e−ρt

(
G(t)

)1−γ

+e−ρtG(t)−γΛ(t) = 0.

Divide the above equation by e−ρt we obtain:

G(t)−γ dG(t)
dt

+ (G(t))1−γ −ρ
1−γ +G(t)−γΛ(t)

γ
1−γ

(
ζk∗(t) + r(t) + Γ(t)

γ−1
− ξ(t)

γ

)
e−ρt

(
G(t)

)1−γ
= 0.
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Divide by G(t)−γ), we get:

dG(t)

dt
+G(t)

−ρ
1− γ

+ Λ(t)
γ

1− γ

(
ζk∗(t) + r(t) +

Γ(t)

γ − 1
− ξ(t)

γ

)
e−ρtG(t) = 0.

Rearrange above equation:

dG(t)

dt
+

(
ξ(t) + ρ

1− γ
− 1

2
γ

(
µ(t)− r(t)
(1− γ)σ(t)

)2

− γ

1− γ
(r(t)+ζi∗(t))

)
+Λ(t) = 0. (4.25)

For simplify let:

Π(t) ,
ξ(t) + ρ

1− γ
− 1

2
γ

(
µ(t)− r(t)
(1− γ)σ(t)

)2

− γ

1− γ
(r(t) + ζi∗(t)), (4.26)

Equation (3.40) can be rewritten as:

dG(t)

dt
− Π(t)G(t) + Λ(t) = 0.

G(T ) = 1.

For simplify let:

Π(t) ,
ξ(t) + ρ

1− γ
− 1

2
γ

(
µ(t)− r(t)
(1− γ)σ(t)

)2

− γ

1− γ
(r(t) + ζi∗(t)), (4.27)

Equation (4.25) can be rewritten as:

dG(t)

dt
+ Π(t)G(t) + Λ(t) = 0,

G(T ) = 1.

Above equation is linear first order differential equation and its solution given by:

G(t) = e
∫ t
T Π(u)du

(∫ t

T

−Λ(s)e
∫ s
T −Π(u)duds+ c

)
.
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From G(T ) = 1 we have:

G(t) = e−
∫ T
t Π(u)du +

∫ T

t

Λ(s)e
∫ T
s −Π(u)due

∫ t
T Π(u)duds.

Thus

G(t) = e−
∫ T
t Π(u)du +

∫ T

t

Λ(s)e−
∫ s
t Π(u)duds. (4.28)

Finally :

a(t) = e−ρt
(

e−
∫ T
t Π(u)du +

∫ T

t

Λ(s)e−
∫ s
t Π(u)duds

)1−γ

. (4.29)

• Substitute the value of Vx from (4.21) in (4.15) we obtain:

κ∗(t, x) =
1

G(t)
(x+ A(t)).

• Substitute the value of Vx and Vxx from (4.21) in (4.16) we obtain:

θ∗(t, x) =
ξβ(t)(x+ A(t))

x (1− γ)
.

• For φ, Let us consider the case where i = u∗ and substitute the value of Vx we get:

φ∗I(t, x) =

((
ζu∗(t)

) 1
γ−1

(G(t))−1
(
x+ A(t)

)
(
ξ(t)

) 1
γ−1

− x

)
ζu∗(t).

Simplify it by assume that:

Ψ(t) =
1

G(t)

(
ζi∗(t)

ξ(t)

) 1
γ−1

.

So we have:

φ∗(t, x) =


max

{
0,

[
Z2

(
t, ζI(t)Vx(t,x)

ξ(t)

)
− x
]
ζI (t)

}
, if u = u∗ (t)

0 0therwise,
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where

i∗ (t) = arg min
i∈{1,2...,I}

{ζI (t)}. (4.30)

• Similarly, we can find q by assuming the case where j = j∗ and substitute the

value of Vx we get:

q∗(t, x) =

((
hj∗(t)

) 1
γ−1

(G(t))−1
(
x+ A(t)

)
(
ξ(t)

) 1
γ−1

)
hj(t).

Simplify it by assume that:

E(t) =
1

G(t)

(
ξ(t)

hγj∗(t)

) 1
1−γ

.

Thus

q∗j (t, x) =

 max
{

0, hj(t)(t)
(
E(t) (x+ A(t))

)}
, if j = j∗ (t)

0 , otherwise ,

Hence, we conclude the proof.

Remark 4.1. (1) It seen from previous Proposition 4.1 that V (t, x), κ∗(t, x),

φ∗u(t, x) and q∗j (t, x) are all increasing with wealth x. However, the optimal risky-

asset allocation θ∗(t, x) is decreasing with wealth x.

(2) It seen from previous Proposition 4.1 that as t goes to T, we have that G(t)→ 1

and A(t) → 0. Hence, we observe that for an economic agent with a large wealth

that is close to reaching pension age, the optimal social welfare purchase will tend

to this limiting quantity of purchase

(
ξ(t)

hγj∗(t)

) 1
1−γ

x.

.
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Chapter 5

Conclusion

We have extended the work done by Mousa et al. [25] and Moath [20] by allowing

the economic agent to contribute in a social welfare market in order to protect her

family in the case of premature death.

We have studied the problem faced by the economic agent who is investing in the

financial market composed of one risk-free asset and only one risky security, and

have access to the life insurance market and social welfare policy consists of L

providers. We have used dynamic programming technique to derive a second order

nonlinear partial differential equation in order to maximize the expected utility.

Finally, We have characterized the optimal strategies concerning consumption,

investment, life-insurance selection and social welfare policy using family of dis-

counted constant relative risk aversion utility functions.

In addition, we have introduced a generalized form for the economic agent to have

access to the financial market comprised of N risky assets, life insurance market,

and social welfare market composed of L providers. We used the idea of dynamic

programming principle to get the optimal strategies. Also, We have determined the

explicit solution in a special case of discounted constant relative risk aversion utility
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functions. Finally, we have concluded some properties for the explicit solutions.
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